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In Chemical Graph Theory, connectivity indices have been found useful in practical
application. Recently, the ve-degree concept is defined in Graph Theory. In this paper, we
introduce the multiplicative product connectivity ve-degree index, multiplicative sum
connectivity ve-degree index, multiplicative atom bond connectivity ve-degree index and
multiplicative geometric-arithmetic ve-degree index of a molecular graph. Furthermore we
compute these multiplicative connectivity ve-degree indices of chemically interesting
networks like dominating oxide and regular triangulate oxide networks.
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INTRODUCTION

A molecular graph is a simple graph related to the structure of
a chemical compound. Each vertex of this graph represents an
atom of the molecule and its edges to the bond between atoms.
A topological index is numerical parameter mathematically
derived from the graph structure. Chemical Graph Theory is a
branch of Mathematical Chemistry which has an important
effect on the development of chemical sciences. There are
many topological indices that have some applications in
Chemistry, see [1].

Let G be a finite, simple connected graph with vertex set V(G)
and edge set E(G). The degree dg(v) of a vertex v is the
number of vertices adjacent to v. Let S, denote the sum degrees
of all vertices adjacent to a vertex v. We call S, as sum degree.
The set of all vertices which adjacent to v is called the open
neighborhood of v and denoted by N(v). The set N(v) U {v} is
called the closed neighborhood of v and denoted by N[v].

In [2], Chellali et al. defined the ve-degree concept in Graph
Theory as follows:

The ve-degree d,¢(v) of a vertex v in a connected graph G is the
number of different edges that incident to any vertex from the
closed neighborhood of v.

The following multiplicative connectivity indices of a graph
were introduced by Kulli in [3]. They are defined as follows:
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The multiplicative product connectivity index of a graph G is
defined as

AR Sy i)

The multiplicative sum connectivity index of a graph G is
defined as

SI1 (G)=

~ 1
uvT(E)(G) dG (U)"' dG (V)

The multiplicative atom bond connectivity index of a graph G

is defined as
~ d + d -2

pscllG)= O \/ o (Wr ds (1) 2

wi E@G) dg (u)dG (V)
The multiplicative geometric-arithmetic index of a graph G is
defined as

~  2,/dg (u)dg (v
@)y @ AE@i®

wi E@G) dg (U)+ dg (V)

Motivated by the definitions of the multiplicative connectivity
indices and their applications, we introduce the multiplicative
product connectivity ve-degree index, multiplicative sum
connectivity ve-degree index, multiplicative atom bond
connectivity ve-degree index and multiplicative geometric-
arithmetic ve-degree index of a graph as follows:

The multiplicative product connectivity ve-degree index of a
graph G is defined as
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~ 1
P.II (G)= _
( ) uvT(E)(G) CIve (U )dve (V)

The multiplicative sum connectivity ve-degree index of a
graph G is defined as

~ 1
Sl (G)= :
( ) uvT(E)(G) CIve (U)+ dve (V)

The multiplicative atom bond connectivity ve-degree index of
a graph G is defined as

~ dve (U)+ dve (V)' 2
Q J RORON

The multiplicative geometric-arithmetic ve-degree index of a
graph G is defined as

_ ~ 2\[ dve (U )dve (V)
AN O G @) 4 @)

Recently, some ve-degree topological indices were studied, for
example, in [4, 5, 6, 7, 8].

We consider the families of dominating oxide networks and
regular triangulate oxide networks [9, 10]. In this paper, we
compute the multiplicative connectivity ve-degree indices for
dominating oxide networks (DOX) and regular triangulate
oxide networks (RTOX).

Results For Dominating Oxide Networks DOX(n)

ABC, Il (G)=

wi E@G)

The molecular structure of a dominating oxide network is
presented in Figure 1. The family of oxide networks is
symbolized by DOX(n).

A\

VAN
XXX

XX
XXX X

Figure 1 The structure of a dominating oxide network

In [9], Ediz obtained the partition of the edges with respect to
their sum degree of end vertices of dominating oxide networks
in Table 1.

Table 1

(Su, SY)\uv e
E(G)
Number of edges 12n

(8,12) (8,14) (12,12) (12,14) (14,16) (16, 16)
12n-12 6 12n-12 24n-24 54n°- 114n+60

Also he has given the ve-degree partition of the end vertices of

edges for dominating oxide networks in Table 2.
Table 2

(dve(u), dve(W))\uv €
EG)
Number of edges

(7,10) (7,12) (10, 10) (10, 12) (12, 14)
12n 12n-12 6

(14, 14)

12n-12 24n-24 54n*- 114n+60

We now compute multiplicative connectivity ve-degree indices
of DOX(n). @

Theorem 1: The multiplicative product connectivity ve-degree
index of a dominating oxide network DOX(n) is

n- 12

¢ wd" w8 p1 g
Rell (DOX ()= E%; %g Ei?)a % 1esz ?

Proof: Let G be the molecular grapzl of a dominating oxide
network DOX(n). By using equation (1) and Table 2, we
deduce

Rell DOX ()= O = (G) . @ V) (uyve (v)

cfxlnz 114n+60

_ § 1 91 ? 1 OlZn 12 ? &, ? 1 é_Zn— 12
C8J7 108 BJ7 123 §J10 105 BJ10 127
024n 24 1 Os4n2- 114n+ 60
EJlZ 147 E\/m’ 148 4
1 (')6” 1 Oen- 6 1 (-)6 1 Oﬁn- 6 16 2n- 12 18 n% 114n+ 60
- %E ga5  Bos B0 Biess 147

Theorem 2: The multiplicative sum connectivity ve-degree

index of a dominating oxide network DOX(n) is
H2n- 12

187° 218, @1 8m°, 221
Sell (DOX ()= 175 ET;E %oz Eﬁ% zezr 285

Proof: Let G be the molecular graph of a dominating oxide
network DOX(n). By using equation (2) and Table 2, we
deduce

Sl (Cox D= O it E(G) (U)+ die (V)

=6 012n 12

§ 1 &2 ? 1 012n 12 § 1 Q ) ? 1
CBJ7+ 108 BJ7+ 127 .10+ 105 BJ10+ 127
.54n?- 114n+ 60

) g24n 24 1 Q
E\/12+ 145 14+ 145
.6Nn- 6 (-j‘lZn— 12

.27n%- 57
3 10 02n 57n+ 30
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205 263 283

Theorem 3: The multiplicative atom bond connectivity ve-

degree index of a dominating oxide network DOX(n) is
(-j27n2- 57n+30

78"° 208, @™ ® @d™ ", msd
-5 Y Bl g

Proof: Let G be the molecular graph of a dominating oxide
network DOX(n). By using equation (3) and Table 2, we

deduce
dve (U)+ dve (V)' 2

ABC, 11 (DOX ()= O J
* wi E@G) dye (u)dve (V)
§/7+10 201 E/le- 2§2"'12,E/10+10- 20 §/10+12 2U
710 & 712 10710 3 10" 12
24n- 24 .54n2- 114n+ 60
@ fi2v1a- 28" ,§/14+14- 71 A
12" 14 § 14" 14 §

Oﬁn Oﬁn 6 6n 6 012n— 12 3(-j27n2— 57n+30
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Theorem 4: The multiplicative geometric-arithmetic ve-degree
index of a dominating oxide network DOX(n) is

7n’- 57n+30
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Proof: Let G be the molecular graph of a dominating oxide
network DOX(n). By using equation (4) and Table 2, we

deduce
2\/ d,e (U)d, (v)

At POXM)= O 56+ )
728" gm 08 E@Mdz

+12 5 5 10+10 7 B 10+12

\/EQMH- 24

E?Jﬁ)

7+10 §

4 .54 114n+ 60
Ezﬂz 14 02 " sz/m g o e

12+ 14 § 14+14 §

\/701 E4\/2_1gun-12 §\/791 §\/792 n- 24
17 3 19 ¥ 11 7 13 7 '
Results For Regular Triangulate Oxide Networks RTOX(n)

The molecular structure of a regular triangulate oxide network
is presented in Figure 2. The family of regular triangulate
oxide networks is denoted by RTOX(n), n>3.

X XXX

Figure 2 The graph of a regular triangulate oxide network RTOX(5)

In [9], Ediz has given the partition of the edges with respect to
their sum degree of end vertices of regular triangulate oxide
networks in Table 3.

Table 3

(1214) (14.14) (1416) (16.16)

(Su.Sy)  (6,6) (6,12)(8,12) (8,14) (12,12)

3n’-

6n-9 6n-12 12n+12

Numberof 5 4 4 eng 1 6
edges

Also he has given the ve-degree partition of the end vertices of
edges for regular triangulate oxide networks in Table 4.

Table 4

(dve(u),

uel¥)) (5,5 (5,10) (7,10) (7,12) (10,10) (10,12) (12,12) (12,14) (14,14)

3n°-
12n+12

Number of
edges

2 4 4 6n-8 1 6 6n-9  6n-12

We now compute the multiplicative product connectivity ve-
degree index of RTOX(n).

Theorem 5: The multiplicative product connectivity ve-degree
index of a regular triangulate oxide network RTOX(n) is

o BB R HLE
¢ ? g © - 12n+12
B be B

Proof: Let G be the molecular graph of a regular triangulate
oxide network RTOX(n). By using equation (1) and Table 4,
we deduce

Rl (RTOX (n))=

) ( ) wi E(G) ve(u)dve (V)
_glg,§1g,§1g§1 d
"BJ5 55 BJ5 108 B7 108 BJ7 125 5J10' 107
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Theorem 6. The multiplicative sum connectivity ve-degree
index of a regular triangulate oxide network RTOX(n) is
:3n- 4

SveII(RTOX(n))=Eig' Eioz 117;2 % ?3 119;
E;ﬁn 9 ?Sn 6 E;o?m 12n+12

Proof: Let G be the molecular graph of a regular triangulate
oxide network TROX(n). By using equation (2) and Table 4,
we deduce

S,ell (TROX (n))=

wi EG) ve(u)+ dve(V)
pr e Opa dp1 8 1 8
§/5+55 B/5+107 B 7+105 BJ7+12% §J10+1o%
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Theorem 7: The multiplicative atom bond connectivity ve-
degree index of a regular triangulate oxide network RTOX(n)

is
-3n- 4

ABC, Il (RTOX (n))= Eﬂg %22 E%gz %%

0 -9 3n 6 \/—0-3n 12n+12
12 § '

Proof: Let G be the molecular graph of a dominating oxide
network RTOX(n). By using equation (3) and Table 4, we

deduce
dve (U)+ dve (V)' 2
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Theorem 8: The multiplicative geometric-arithmetic ve-degree
index of a regular triangulate oxide network RTOX(n) is

GAII (RTOX (n))= ?ﬁ‘ erod, mvad"’, @yaed, @roan ’

175 6195 K115 §13 5
Proof: Let G be the molecular graph of a regular triangulate
oxide network RTOX(n). By using equation (4) and Table 4,

we deduce
2\/dve (u)dye (v)

wi E(G) ve (U)+ dve (V)

ABC, Il (RTOX (0))= O
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