

CONEXT (CONCEPT EXPLORATOR) A FRAMEWORK FOR SYSTEM COMPREHENSION WITH
HOLISTIC APPROACH IN REVERSE ENGINEERING

*Tenoyo, B.,

Faculty of Computer Science, Depok, Indonesia

A R T I C L E I N F O

INTRODUCTION

In every organization when an application getting older and its
services still require, it will grow to fulfill the business. Source
code changes for bug fixing and new features can not be
avoided. As the business evolves the application will follow as
long as it supports the goal. Sometimes it takes longer time for
a system to evolve compare to team member involvement in
the development. Thats is why member of development team
is hard to maintain. For a new member to understand a new
feature or a new module that assigned to him it need time
because of a new domain must be understood. Member must
explored the concepts as prerequsite of his task that explained
from so many artifacts. Regardless unsynchronized
with current source codes or implementation, the exploration
itself has problem, for example tracking and decide which
document need to visit.

Solving this kind of problems, Reverse Engineering is needed
especially to provide the current documentation or artifacts or
diagrams in order to help people or development team to finish
it tasks.

Reverse Engineering have so many approaches and method
types depend on its goal, several goals that has been acquired
based on our literature studies are as follow (Figure 1):

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319-6505,
Available Online at www.journalijcar.org
Volume 6; Issue 12; December 2017; Page No.
DOI: http://dx.doi.org/10.24327/ijcar.2017.

Article History:

Received 17th September, 2017
Received in revised form 21st
October, 2017
Accepted 05th November, 2017
Published online 28th December, 2017

Key words:

Reverse engineering, system comprehension,
user model, conceptual model, level of
abstraction, decomposition

Copyright©2017 Tenoyo, B., Mursanto, P and Santoso, H.B
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

*Corresponding author: Tenoyo, B
Faculty of Computer Science, Depok, Indonesia

CONEXT (CONCEPT EXPLORATOR) A FRAMEWORK FOR SYSTEM COMPREHENSION WITH
HOLISTIC APPROACH IN REVERSE ENGINEERING

*Tenoyo, B., Mursanto, P and Santoso, H.B

Faculty of Computer Science, Depok, Indonesia

 A B S T R A C T

The purpose of this paper is to introduce a framework of Reverse Engineering to help
system comprehension using holistic approach. Our framework consists of several
components: conceptual model – to provide model of studied system so it can help user to
explore artifacts and understand the relationship between existing concepts, user model
provide and to record concepts that has been explored and will be explored, methods
we provide or create concept structures for conceptual model and user model, and the last
part is tool – it will help user to understand the studied system. Us
may help user to prevent lost of focus when he explore the concepts he want to know. This
framework also provide infrastructure how to quantify a comprehension of a system.

In every organization when an application getting older and its
services still require, it will grow to fulfill the business. Source
code changes for bug fixing and new features can not be

business evolves the application will follow as
long as it supports the goal. Sometimes it takes longer time for
a system to evolve compare to team member involvement in
the development. Thats is why member of development team

w member to understand a new
feature or a new module that assigned to him it need time
because of a new domain must be understood. Member must
explored the concepts as prerequsite of his task that explained
from so many artifacts. Regardless unsynchronized artifacts
with current source codes or implementation, the exploration
itself has problem, for example tracking and decide which

Solving this kind of problems, Reverse Engineering is needed
ntation or artifacts or

diagrams in order to help people or development team to finish

Reverse Engineering have so many approaches and method
types depend on its goal, several goals that has been acquired

ollow (Figure 1):

 System comprehension (
Müller et al., 2000)
comprehension of the application or logical
comprehension that can be illustrated using data floww,
control flow, Class Diagram, or Sequence Diagram of
the source code.

 Architecture changes to increase performance or to
produce reuseabillity. Before application’s architecture
is changed an evaluation should be made first. We can
use metrics [Müller
Demeyer et al., 1999) or diagrams (
2005) to analyze or to evaluate, such as bottleneck or
performance issue (Mendelzon, and Sametinger, 1995)
and dependency issues (Systa, 1999)

 To maintain consistency with new requirements or to
validate the design. Consistency can be approached
using formal method (
Gannod and Cheng, 2
(Murphy and Notkin, 1997)

 To visualize system properties or behaviors using static
diagrams and dynamic diagrams (
diagram such as Class Diagram from UML and
Dynamic Diagram such as diagram to visualize prog
performance and memory leak (
Management Group, 2006)

International Journal of Current Advanced Research
6505, Impact Factor: SJIF: 5.995

www.journalijcar.org
2017; Page No. 8670-8676

http://dx.doi.org/10.24327/ijcar.2017.8676.1404

Tenoyo, B., Mursanto, P and Santoso, H.B. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

Faculty of Computer Science, Depok, Indonesia

CONEXT (CONCEPT EXPLORATOR) A FRAMEWORK FOR SYSTEM COMPREHENSION WITH
HOLISTIC APPROACH IN REVERSE ENGINEERING

The purpose of this paper is to introduce a framework of Reverse Engineering to help
Our framework consists of several

to provide model of studied system so it can help user to
explore artifacts and understand the relationship between existing concepts, user model – to
provide and to record concepts that has been explored and will be explored, methods – how
we provide or create concept structures for conceptual model and user model, and the last

it will help user to understand the studied system. Using this framework we
may help user to prevent lost of focus when he explore the concepts he want to know. This
framework also provide infrastructure how to quantify a comprehension of a system.

System comprehension (Armstrong, and Trudeau, 1998;
., 2000), regarding architecture

comprehension of the application or logical
comprehension that can be illustrated using data floww,
control flow, Class Diagram, or Sequence Diagram of

Architecture changes to increase performance or to
useabillity. Before application’s architecture

is changed an evaluation should be made first. We can
Müller et al., 2000; Dufour, 2004;

) or diagrams (Gorton and Zhu,
) to analyze or to evaluate, such as bottleneck or

Mendelzon, and Sametinger, 1995)
Systa, 1999).

To maintain consistency with new requirements or to
validate the design. Consistency can be approached
using formal method (Gannod and Cheng, 1999;
Gannod and Cheng, 2001) and non formal method
Murphy and Notkin, 1997).

To visualize system properties or behaviors using static
diagrams and dynamic diagrams (Systa, 1999). Static
diagram such as Class Diagram from UML and
Dynamic Diagram such as diagram to visualize program
performance and memory leak (Dufour, 2004; Object
Management Group, 2006).

Research Article

This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Current Advanced Research Vol 6, Issue 12, pp 8670-8676, December 2017

8671

Figure 1 Reverse Engineering Goals

Based on the goals of Reverse Engineering many tools have
been developed. They produced static diagrams and dynamic
diagrams of source code. Here are some list of tools for
Reverse Engineering, organized based on the goal:

System Comprehension and Visualisation

 Simple Hierarchycal Multi Perspective (Storey and
Müller, 1995), the tool can produce relationship
between concept from source code in term of
architecture view, for example it seggregate the view
based on sub system of the application. Selection to
reduce the diagram complexity also available to help
user more focus.

 Rigi (Müller, 1986; Storey et al., 1997), it has another
advantage than previous tool: subsystem of the
application can be define semi automatically based on
pattern recognition and domain knowledge.

 Graphical Representation of Algorithms, Structures, and
Processes (Cross, 1991), this tool provide Control
Structure Diagram that enable user to expand and shrink
from a nested block of source code, it may simplify the
visualization of source code.

 Hy+: Hygraph based on query and visualization
(Consens and Mendelzon, 1993), this tool enable us to
query a concept and its relationship to provide relevant
information with user needs. It also provide the
visualization.

 Architecture Reconstruction and Mining (Kazman et al.,
2003), its visualisation may help architecture changes to
analyze.

Architecture Changes

 Design Maintenance System (Baxter, 1992); the tool is
a part of software development tool (forward
engineering). DMS provide problems that may exist
and the reason why a model has been choosen to solve
the problems. The decision is based on pattern
recognition of the problem.

 Dr. Jones (Foltz, 2003): it can redesign Java source
code based on current refactoring rules. The output of
application is design representation based on specific
point of view and design representation for a whole
source code.

Consistency

 Reflexion Model (Murphy and Notkin, 1997) help
user to validate between design decision in the
previous phase and design result after the source code
is created. It will show which design is consistent
from start to implementation and which one is not.

 AutoSpec (Gannod and Cheng, 2001) help user to
check consistency between abstraction model and its
specification using formal method.

 Bauhaus (Raza, et al., 2006), to support user develop
critical application and maintenance activities. Other
literature shows (Berger and Bunke, 2011) that
Bauhaus is able to check consistency between
security specification for Android application against
Android source code.

Holistic Approach

In this paper we propose a holistic approach for system
comprehension has following factors to consider:

Support for evaluation and quantification. A process or
Reverse Engineering itself must be able to repeat, define, and
optimize (Müller et al., 2000) according to Capability
Maturity Model Integration (CMMI), there are three factors
that must be included in a good software process: people,
methods, and tools (Team, 2011). In our approach those three
factors can be defined as following requirements:

 People – the framework must support us to quantify the
user comprehension.

 Methods – the framework must guide us how we do the
Reverse Engineering; what kind of diagrams should be
produced, and what kind of process that should be
supported.

 Tools – the framework must be supported with tools,
and it must have clear requirements or specification to
reduce dependency on a specific tool. Tool of Reverse
Engineering itself should have user model and domain
problem model, for example Air Man-Machine
Integration Design and Analysis System (Air MIDAS)
(Gore, 2002). Air MIDAS is an application to help user
or operator to support their task. In Air MIDAS the user
model represents: perception modelling, working
memory model, and tasks model, the domain model
represents: interruption possibilities, environment,
vehicle condition, aerodinamics problem, guidance, and
terrain.

Support interaction between user and the system. Interaction
when we develop a system is required between developer and
its client, same with Reverse Engineering process the tool that
we will built must support interaction with people. The
interaction should guarantee people (client) understanding
same meaning or goal from both parties (Margaret, 1994.):
point of view changes from different angle to same angle, to
control information changes from both parties, provide
feedback such as confirmation, warning, suggestion.

In a complex system, understanding the system itself requires
another system (Idiagram, 2012), because it requires so many
aspects, actions, and information to digest, to solve and to
analyze, to get the comprehension. Idiagram explains their
holistic approach for system comprehension consist of
following elements: Mental Model (to model people
understanding) and Conceptual Model (to model the problem
itself or the system). Those two models will help people or
team work to focus, predict, agree with, decide, organize,
define the priority, and planning.

To support system comprehension from a complex system we
can use abstraction leveling and decomposition approach

Conext (Concept Explorator) A Framework For System Comprehension With Holistic Approach In Reverse Engineering

(Wing, 2006). Abstraction leveling means we see the system
from global description into more detail or technical
information. The level itself depends on the method that we
use. For example in Software Engineering we know
Requirement, Analysis and Design, and Implementation.
Decomposition see a system from several part or module or
package in a software terminology.

Framework in Reverse Engineering

We found that Reverse Engineering frameworks are created
depends on its own goal, here are several examples related
framework that exist in Reverse Engineering:

 Database Reverse Engineering Framework (Chiang
al., 1996) framework to produce database design. It
consists of eight steps: choose the right situation when
Reverse Engineering can be applied; choose conceptual
model as the result; define prerequisites; domain
semantic acquisition; create or choose heuristics and
rules for Reverse Engineering; performance efficiency
of the process itself; completeness and robustness
results; and the last step is validation.

 EVOLVE (Wang et al., 2003) is a framework for
visualisation. It has five main components or modules:
Data Sources, Data Protocol, Data Platform,
Visualisation Protocol, and Visualisation Library.

 FASAR (Kang et al., 2009) is a framework for
architecture reconstruction. FASAR consists of three
steps to reconstruct the architecture. First step is system
characteristic extraction, second step is select the proper
tools in order with previous result, and the thi
reconstruct the architecture using the tool. FASAR also
define there are two types of view that should be
produced using the tool, dynamic veiw and static view.
Static view relates with system architecture, dynamic
view relates with system execution properties.

 VizzAnalyzer framework (Panas and Staron, 2005) for
customization, the goal of this framework is to answer
several performance issues when we do Reverse
Engineering. The issues such as: development
efficiency such as time and errors that exis
quality such as parsing time and memory consumption.
To answer the issues metrics are required.

 MemBrain (Minhancea, 2008) the goal is to provide
representation and framework for data flow Reverse
Engineering. The representation consists of
sets as low level representation and translator as
converter to MemBrain representation. The framework
consists of following concepts: BasicBlock,
ControlFlowGraph, InOutSet, DataFacts,
DataFlowAnalysis, ComputedValue, Instruction,
InstructionVisitor, Addition, and InstanceOf.

One of our contribution is a framework that may support
system comprehension via Reverse Engineering. We define
our holistic approach according to chapter 2. Using our
approach, several problems can be handled:

 Provide a navigation diagram to support exploration.
User can be more effective to learn a new concept, what
concept that should be learned or related with his
question.

 We may able to quantify a comprehension of a concept
in the system against user exploration. T

amework For System Comprehension With Holistic Approach In Reverse Engineering

8672

(Wing, 2006). Abstraction leveling means we see the system
from global description into more detail or technical
information. The level itself depends on the method that we
use. For example in Software Engineering we know
Requirement, Analysis and Design, and Implementation.
Decomposition see a system from several part or module or

We found that Reverse Engineering frameworks are created
own goal, here are several examples related

framework that exist in Reverse Engineering:

Database Reverse Engineering Framework (Chiang et
., 1996) framework to produce database design. It

consists of eight steps: choose the right situation when
Engineering can be applied; choose conceptual

model as the result; define prerequisites; domain
semantic acquisition; create or choose heuristics and
rules for Reverse Engineering; performance efficiency
of the process itself; completeness and robustness of the

., 2003) is a framework for

visualisation. It has five main components or modules:
Data Sources, Data Protocol, Data Platform,
Visualisation Protocol, and Visualisation Library.

., 2009) is a framework for
architecture reconstruction. FASAR consists of three
steps to reconstruct the architecture. First step is system
characteristic extraction, second step is select the proper
tools in order with previous result, and the third step
reconstruct the architecture using the tool. FASAR also
define there are two types of view that should be
produced using the tool, dynamic veiw and static view.
Static view relates with system architecture, dynamic

n properties.
VizzAnalyzer framework (Panas and Staron, 2005) for
customization, the goal of this framework is to answer
several performance issues when we do Reverse
Engineering. The issues such as: development
efficiency such as time and errors that exist, product
quality such as parsing time and memory consumption.
To answer the issues metrics are required.
MemBrain (Minhancea, 2008) the goal is to provide
representation and framework for data flow Reverse
Engineering. The representation consists of instruction
sets as low level representation and translator as
converter to MemBrain representation. The framework
consists of following concepts: BasicBlock,
ControlFlowGraph, InOutSet, DataFacts,
DataFlowAnalysis, ComputedValue, Instruction,

isitor, Addition, and InstanceOf.

One of our contribution is a framework that may support
system comprehension via Reverse Engineering. We define
our holistic approach according to chapter 2. Using our

navigation diagram to support exploration.
User can be more effective to learn a new concept, what
concept that should be learned or related with his

We may able to quantify a comprehension of a concept
in the system against user exploration. That is why in

our holistic approach User Model and Conceptual
Model should be developed using same notation.

Conext Framework

Our hollistic approach named ConExt framework. The
framework is built based on several components, they are as
follow (Figure 2):

 Input: source code and user guide. Source code is main
input for diagram or concept representation on each
level of abstraction. User guide is used for develop
subsystem concept or representation.

 Modelling: User Model and Conceptual Model. User
model consists of: Task (list of tasks or goals which
concept that will be explored or digest), Scope of
comprehension, User types, Task structure, and
Memory model. Conceptual model consists of:
representation of source codes: file, variable, library,
function, etc; Logical view
(Kruchten, 1995); Development view
how we organize to source code (Kruchten, 1995);
Requirements model/system behavior
modelling based on system requirements (in natural
language) to reduce or to avoid ambiguity and to
support decomposition complex problems (Myers,
2010); System requirements represented in natural
language – it is more easily to digest than the formal
form.

 Methodology: Translation from source code to each
level of abstraction, level abstraction refer to conceptual
model explain previous; interaction between user and
system; how to represent user understanding in system;
and decide scope of conceptual model that can be learnt.

 Tool: an application to help user to get
according to their goal. Main features of the tool are as
follow: as repository –
concepts that will be used for exploration; visualize the
diagrams or artifacts; update or create conceptual model
according to the input (source code and user guide);
update or create user model according to user
interaction.

Figure 2 ConNext Framework

Input

Source code file must be organized into repository, it will
enable user to see relationship between artifacts or
during the exploration process. User guide is required to
generate subsystem concepts and system requirements in
natural language. Subsystem concepts help user to create clear
boundary of exploration or comprehension process.

amework For System Comprehension With Holistic Approach In Reverse Engineering

our holistic approach User Model and Conceptual
Model should be developed using same notation.

Our hollistic approach named ConExt framework. The
framework is built based on several components, they are as

Input: source code and user guide. Source code is main
input for diagram or concept representation on each
level of abstraction. User guide is used for develop
subsystem concept or representation.
Modelling: User Model and Conceptual Model. User

consists of: Task (list of tasks or goals which
concept that will be explored or digest), Scope of
comprehension, User types, Task structure, and
Memory model. Conceptual model consists of:
representation of source codes: file, variable, library,

etc; Logical view – data flow and control flow
(Kruchten, 1995); Development view – architecture or
how we organize to source code (Kruchten, 1995);
Requirements model/system behavior – system
modelling based on system requirements (in natural

o reduce or to avoid ambiguity and to
support decomposition complex problems (Myers,
2010); System requirements represented in natural

it is more easily to digest than the formal

Methodology: Translation from source code to each
bstraction, level abstraction refer to conceptual

model explain previous; interaction between user and
system; how to represent user understanding in system;
and decide scope of conceptual model that can be learnt.
Tool: an application to help user to get comprehension
according to their goal. Main features of the tool are as

– source codes, artifacts, and
concepts that will be used for exploration; visualize the
diagrams or artifacts; update or create conceptual model

e input (source code and user guide);
update or create user model according to user

ConNext Framework

Source code file must be organized into repository, it will
enable user to see relationship between artifacts or concepts
during the exploration process. User guide is required to
generate subsystem concepts and system requirements in
natural language. Subsystem concepts help user to create clear
boundary of exploration or comprehension process.

International Journal of Current Advanced Research

User Model

User Model consists of several components (Figure 3): Task,
User Types, Scope of Comprehension, Task Structure, and
Memory Model. Before User Model exists, system must
provide Concept Structure that excerpted or created based on
Artifacts that exist in every levels of abstraction. The Concept
Structure will be copied partially to Task Structure according
to a set of constraints, such as: what the User Types and what
concept the user want to know.

User explores the concept according to Task Structure that has
been created. The exploration is recorded as a Memory Model.

Figure 3 User Model

Here is a brief description for each User Model component:

 Tasks – a task is a set of concepts (exist in the system)
that are questioned by user and the user wants to
explore relationship with other concepts. A user may
have more than one task that recorded in the tool. For
example a programmer want to know concepts that may
exist in a file main.c and in a file calculate.c. It can be
recorded as two different tasks. Another exa
requirement engineer want to understand customer
concept and product concept that may exist in the
system. Those exploration goals can be recorded as two
different tasks.

 User Types – every user types has different starting
point of level abstraction. We have three kind of user
types: Requirement Engineer, System Analyst, and
Programmer. For example a programmer start the
exploration from source code representation level, but
for a requirement engineer – they may start the
exploration from system requirement representation
level.

 Scope of comprehension is a definition that attached
with the user types. For example a requirement engineer
may not explore source code representation level. He or
she just explore from system requirement representation
to logical view representation level. A programmer may
not explore system requirements representation level.
He or she just explore source code representation until
logical or development view level only.

 Task structure is a structure or relationship between
concepts that created because user explores the artifacts
related to a specific task. Task structure is a partial copy
of Concepts structure, as mentioned before it created
based on User Type and Task.

International Journal of Current Advanced Research Vol 6, Issue 12, pp 8670-8676

8673

el consists of several components (Figure 3): Task,
User Types, Scope of Comprehension, Task Structure, and
Memory Model. Before User Model exists, system must
provide Concept Structure that excerpted or created based on

s of abstraction. The Concept
Structure will be copied partially to Task Structure according
to a set of constraints, such as: what the User Types and what

User explores the concept according to Task Structure that has
created. The exploration is recorded as a Memory Model.

Here is a brief description for each User Model component:

a task is a set of concepts (exist in the system)
that are questioned by user and the user wants to

relationship with other concepts. A user may
have more than one task that recorded in the tool. For
example a programmer want to know concepts that may
exist in a file main.c and in a file calculate.c. It can be
recorded as two different tasks. Another example a
requirement engineer want to understand customer
concept and product concept that may exist in the
system. Those exploration goals can be recorded as two

every user types has different starting
on. We have three kind of user

types: Requirement Engineer, System Analyst, and
Programmer. For example a programmer start the
exploration from source code representation level, but

they may start the
quirement representation

Scope of comprehension is a definition that attached
with the user types. For example a requirement engineer
may not explore source code representation level. He or
she just explore from system requirement representation

logical view representation level. A programmer may
not explore system requirements representation level.
He or she just explore source code representation until
logical or development view level only.
Task structure is a structure or relationship between
concepts that created because user explores the artifacts
related to a specific task. Task structure is a partial copy
of Concepts structure, as mentioned before it created

 Memory model is a concepts structure that represent
explored concepts, in another word as a subset of task
structure. Figure 4 show relationship between Artifacts
– Concepts Structure
Model. From artifacts of every level of abstraction we
can create Concepts Structure as source of Ta
Structure. Memory Model is created from Taks
Structure.

Figure 4 Structures Relationship

Conceptual Model

Figure 5 shows that Conceptual Model consists of system
description with several levels of abstraction and conceptual
structures that may exist to describe concepts relationship.
More higher the level of abstraction means it is more abstract
or less detail than lower level.
described with its own artifacts: system requirement level (
highest level) describe in requirements document
natural language; system behavior level describe in diagram
for example Behavior Tree Diagram
describes with diagrams such as class diagram, sequence
diagram, etc; development view describes with diagram such
as package diagram, architecture diagram, etc; and file
representation view describes with calls diagram, function and
library relationship diagram, etc; the lowest level is source
code.

Figure 5 Conceptual Model

After all artifacts are created
process from artifacts become concepst structure can be started
(Figure 6). Artifacts on the level of abstraction is parsed
become a concepts set (for example source code
representation: variables, functions, etc). Currently Concepts
structure still build using full user interaction
tool will develop for further research (at this moment the tool
only as concept and diagram container). User build one by one
a non complete structure (decomposition diagram) but it will
create whole concept structure automatically on each level of
abstraction.

8676, December 2017

Memory model is a concepts structure that represent
plored concepts, in another word as a subset of task

structure. Figure 4 show relationship between Artifacts
Concepts Structure – Task Structure – Memory

Model. From artifacts of every level of abstraction we
can create Concepts Structure as source of Task
Structure. Memory Model is created from Taks

Structures Relationship

Figure 5 shows that Conceptual Model consists of system
description with several levels of abstraction and conceptual

t to describe concepts relationship.
More higher the level of abstraction means it is more abstract
or less detail than lower level. All levels of abstraction are

with its own artifacts: system requirement level (the
level) describe in requirements document – explains in

natural language; system behavior level describe in diagram
for example Behavior Tree Diagram [34]; logical view level
describes with diagrams such as class diagram, sequence

t view describes with diagram such
as package diagram, architecture diagram, etc; and file
representation view describes with calls diagram, function and
library relationship diagram, etc; the lowest level is source

Conceptual Model

created or available, the translation
process from artifacts become concepst structure can be started
(Figure 6). Artifacts on the level of abstraction is parsed
become a concepts set (for example source code

, functions, etc). Currently Concepts
structure still build using full user interaction – semi automatic
tool will develop for further research (at this moment the tool
only as concept and diagram container). User build one by one

(decomposition diagram) but it will
create whole concept structure automatically on each level of

Conext (Concept Explorator) A Framework For System Comprehension With Holistic Approach In Reverse Engineering

Figure 6 Concepts Level of Abstraction– Concepts Structure

Methodologies

In this framework there are several methodologies introduce,
because there are so many processes need to be done:

1. How to use the Application or Tool.
2. How to create Conceptual Model.
3. How to create User Model.

How to Use the Application or Tool

 Preparation: Upload the source code into the application
or the tool. It is very important to a user to read the
source code when user start exploration.

 Create Conceptual Model as domain knowledge or
information as a subject to learn:

 Create file representation view based on source code
and file representation concepts set and its structure
between the set member.

 Create logical view based on file representation
concepts and source code. In this step we also create
logical view concepts and its relationship.

 Create development view based on logical view
concepts, file representation concepts, user guide and
source code. Development view concepts and its
relationship has to be created also.

 Create system requirement and system behavior
diagram based on all previous views and all concepts
that exist in all levels. The requirements concepts also
created in this step.

 Create User Model that help user in the process to
understand a system or an application:

 Get information of User Type from user, system uses it
to decide what kind information or scope of the
information as their goal. For example the user type is a
programmer, it means he will be restricted only access
concepts from Development view, Logical view, and
File representation view.

 User record or create a task or a query that will be
replied with a Concepts Structure by the application to
help them to explore the artifacts. The application or
tool allow user to create more than a task in a time
depend on his role in a development team.

 Create concepts structure or concepts relationship
related with user type and task. The concepts strutcture
is use to help user to coupe the comprehension of
system.

 Memory is created to record which concepts that have
been explored or visited. Each concept may has status
that explain which one is already visited and which one
is not yet.

How to Create Conceptual Model

The translation process from Artifacts become Concepts
Structure has been described on Figure 7. In this section we

amework For System Comprehension With Holistic Approach In Reverse Engineering

8674

Concepts Structure

In this framework there are several methodologies introduce,
because there are so many processes need to be done:

How to use the Application or Tool.
How to create Conceptual Model.

on: Upload the source code into the application
or the tool. It is very important to a user to read the
source code when user start exploration.
Create Conceptual Model as domain knowledge or

view based on source code
and file representation concepts set and its structure

Create logical view based on file representation
concepts and source code. In this step we also create
logical view concepts and its relationship.

ate development view based on logical view
concepts, file representation concepts, user guide and
source code. Development view concepts and its

Create system requirement and system behavior
s views and all concepts

that exist in all levels. The requirements concepts also

Create User Model that help user in the process to
understand a system or an application:
Get information of User Type from user, system uses it

de what kind information or scope of the
information as their goal. For example the user type is a
programmer, it means he will be restricted only access
concepts from Development view, Logical view, and

sk or a query that will be
replied with a Concepts Structure by the application to
help them to explore the artifacts. The application or
tool allow user to create more than a task in a time
depend on his role in a development team.

re or concepts relationship
related with user type and task. The concepts strutcture
is use to help user to coupe the comprehension of

Memory is created to record which concepts that have
been explored or visited. Each concept may has status

xplain which one is already visited and which one

The translation process from Artifacts become Concepts
Structure has been described on Figure 7. In this section we

describe how to create relationship and tran
concepts in lower level with concepts in higher level. Figure 8
shows the process.

For example we want to create relationship between source
code in C Language with Class Diagram on analyst level (or
Logical View). In this case source
lower level and Class Diagram is the artifact of the higher
level. Our approach is to create several layer of Concept
Structure that can be used to close the gap between those two
abstraction layers1.

Figure 7 Conceptual Str

How to Create User Model

As mentioned previously, User Model components are Task,
Task Structure, User Type, Scope Comprehension, and
Memory. User Type and Scope Comprehension are something
static, but Task Structure and Memory Model
dynamics. Task Structure and Memory Model will evolve
according to how many artifacts that have been visited and
how many concepts have been explored.

Figure 8 describes the life cycle of User Model according to a
Taks. After user enter a query related artifacts are presented to
user. User choose one of the artifacts, than related Concepts
Structure are copied and add to Task Structure. User may
browse relationship that exist in the new Task Structure
Diagram and may choose one or several concepts. Several
artifacts will be provided and the process start just like the
beginning.

Figure 8 User Model Life Cycle

1 Notation, diagrams, level of abstraction, and the translation process still in our research.

amework For System Comprehension With Holistic Approach In Reverse Engineering

describe how to create relationship and transformation from
concepts in lower level with concepts in higher level. Figure 8

For example we want to create relationship between source
code in C Language with Class Diagram on analyst level (or
Logical View). In this case source code is the artifact of the
lower level and Class Diagram is the artifact of the higher
level. Our approach is to create several layer of Concept
Structure that can be used to close the gap between those two

Conceptual Structures Relationship

As mentioned previously, User Model components are Task,
Task Structure, User Type, Scope Comprehension, and
Memory. User Type and Scope Comprehension are something
static, but Task Structure and Memory Model are something
dynamics. Task Structure and Memory Model will evolve
according to how many artifacts that have been visited and
how many concepts have been explored.

Figure 8 describes the life cycle of User Model according to a
Taks. After user enter a query related artifacts are presented to
user. User choose one of the artifacts, than related Concepts
Structure are copied and add to Task Structure. User may

elationship that exist in the new Task Structure
Diagram and may choose one or several concepts. Several
artifacts will be provided and the process start just like the

User Model Life Cycle

Notation, diagrams, level of abstraction, and the translation process still in our research.

International Journal of Current Advanced Research Vol 6, Issue 12, pp 8670-8676, December 2017

8675

Same query may produce different result according to User
Types, because the authorities of which level of abstraction
may be explored must comply with Scope Comprehension that
always refer to User Types.

User explores the information with help of a Task Structure,
during the exploration user may give status of each concept,
which one is already understood, and which is not yet. All
concepts that have been visited are recorded in memory
regardless the status. The exploration can be saved and can be
continued to the next logon.

Tool

The main purporse of the tool is to help user when exploring
the domain knowledge. It has to have following minimum
features: repository for source code, artifacts, and concepts
structure for navigation purpose; it support translation from
source code and user guide become artifacts and concepts
structure; the tool can create conceptual model and user model;
the tool must support all methodologies that have been
mentioned above.

Summary

Using our hollistic approach in system comprehension we are
able to do following activities:

 People improvement: Scope comprehension indicator –
that can be supported using metrics, for example by
compared the actual specific related concepts structure
with explored concepts. User learning strategies – the
tool may provide percentage or number to indicate how
many concepts that should be visited in the next
exploration. To support that metric concepts suggestion
list can be provided: for example by provide another
concepts that related or connected between two
explored concepts.

 Method improvement: reduce interaction between
administrator and tool when develop conceptual
structure – until now abstraction from lower level to
higher level still requires human intervention or analyst.
We may improve the analyst process by providing
several similarity structures as input for user to
recognize more abstract concept. Provide different
learning strategies based on user type. An analyst
requirements and a programmer requirements to
understand a system have different approach or starting
point. Our framework support this requirements.

 Tool improvement: discussion with users based on their
experience to get ideal requirements what features that
should be exist to support their exploration process or
comprehension. For example: feature to provide
administrator to add a new concept in the concept
structure based on user opinion.

 Interaction between user and tool is supported by using
User Model as our dashboard to monitor his
understanding or comprehension based on his task.

 User Model and Conceptual Model are different system
but may affect each other, using separated model
between those domain will help us to understand the
studied system.

 Abstraction leveling and decomposing activities as two
main activities to support the structures that exists in the
studied system.

Our future works will involve several case studies to improve
all important parts in our framework. Different types of
software and size may help the maturity of our notation and
diagrams that use for the structures or models, improve the
methodologies to handle many type of cases, and tools to help
user work more convinience.

References

Armstrong, M.N. and Trudeau, C. 1998. Evaluating
Architectural Extractors, Proceedings IEEE: 5th
Working Conference on Reverse Engineering.

Baxter, I.D. 1992. Design Maintenance Systems.
Communication of the ACM. April 1992.

Berger, B.J. and Bunke, M. 2011. An Android Security Case
Study Bauhaus. In Proceedings 18th. Working
Conference. Center for Computing Technologies,
Universitat Bremen – Germany.

Chiang, R.H.L., Barron, T.M. and Storey, V.C. 1996. A
Framework for the Design and Evaluation of Reverse
Engineering Methods for Relational Database. Data &
Knowledge Engineering, 21(1), 57-77.

Consens, M., and Mendelzon, A. 1993. Hy+: A hygraph-
based query and visualization system. In ACM
SIGMOD Record, 22(2), 511-516.

Cross, J. H. 1991. GRASP/Ada: Graphical Representations
of Algorithms, Structures, and Processes for Ada. The
development of a program analysis environment for
Ada: Reverse engineering tools for Ada, task 2, phase 3.

Demeyer, S., Ducasse, S., and Lanza, M. 1999. A Hybrid
Reverse Engineering Approach Combining Metrics and
Program Visualisation. In Proceedings 6th Working
Conference on Reverse Engineering.

Dufour, B. 2004. Objective Quantification of program
Behaviour Using Dynamics Metrics. Thesis Montreal:
School of Computer Science, Mc Gill University.

Foltz, M.A. 2003. Dr. Jones: A Software Design Explorer’s
Crystall Ball. Thesis Massachussetts Institute of
Technology, Doctor of Phylosophy in Computer
Science and Engineering.

Gannod, G.C. and Cheng, B.H. 1999. A Formal Approach
for Reverse Engineering: A Case Study. In Proceedings
of the 6th Working Conference of Reverse Engineering.

Gannod, G.C. and Cheng, B.H. 2001. A Suite of Tools for
Facilitating Reverse Engineering Using Formal
Methods. In Proceedings. 9th International Workshop
on Program Comprehension.

Gore, B.F. 2002. Human Performance Cognitive-Behavioral
Modeling: A Benefit for Occupational Safety.
International Journal of Occupational Safety and
Ergonomics, 8(3), 339-351.

Gorton, I., and Zhu, L. 2005. Tool Support for Just in Time
Architecture Reconstruction and Evaluation: An
Exprience Report. In Proceedings. 27th International
Conference on Software Engineering.

Idiagram. 2012.
http://www.idiagram.com/CP/cpprocess.html.

Kang, S., Lee, S., and Lee, D. 2009. A Framework for Tool-
Based Software Architecture Reconstruction.
International Journal of Software Engineering and
Knowledge Engineering, 19(02), 283-305.

Kazman, R., O’Brien, L., and Verhoef, C. 2003.
Architecture Reconstrution Guidelines. Technical

Conext (Concept Explorator) A Framework For System Comprehension With Holistic Approach In Reverse Engineering

 8676

Report CMU/SEI-2002. Carnegie Mellon, Software
Engineering Institute.

Kruchten, P. 1995. Architectural Blueprints – The “4+1”
View Model of Software Architecture. IEEE Software
12, November 1995.

Margaret, T. 1994. Mutual Understanding in System Design:
An Emperical Study. Journal of Management
Information Systems, 10(4), 159-182.

Mendelzon, A. and Sametinger, J. 1995. Reverse
Engineering by Visualizing and Querying. Software
Concepts and Tools, Springer Verlag.

Minhancea, P.F. 2008. Towards a Reverse Engineering
Dataflow Analysis Framework for Java and C++. In
Proceedings 10th International Symposium on
Symbbolic and Numeric Algorithms for Scientific
Computing. IEEE Computer Society.

Müller, H.A. 1986. Rigi A Model for Software System
Construction, Integration and Evolution Based on
Module Interface Specification”. Thesis Rice
University.

Müller, H. A., Jahnke, J. H., Smith, D. B., Storey, M. A.,
Tilley, S. R., & Wong, K. 2000. Reverse engineering: A
roadmap. In Proceedings of the Conference on the
Future of Software Engineering, 47-60.

Murphy, G.C. and Notkin, D. 1997. Reengineering with
Reflexion Models: A Case Study. IEEE.

Object Management Group. 2006. Diagram Interchange.
Object Management Group.

Myers, T. 2010. The Foundations for a Scalable
Methodology for System Design. School of Information
and Communication Technology Science, Environment,
Engineering, and Technology, Griffith University.

Panas, T. and Staron, M. 2005. Evaluation of a Framework
for Reverse Engineering Tool Construction. In
Proceedings. of the 21st IEEE International Conference
on Software Maintenance. IEEE Computer Society.

Raza, A., Vogel, G. and Plodereder, E. 2006. Bauhaus – a
Tool Suite for Program Analysis and Reverse
Engineering”. In Proceedings 11th Ada-Europe
International Conference on Reliable Software
Technologies.

Storey, M.A.D. and Müller, H.A. 1995. Manipulating and
Documenting Software Structures Using ShriMP
Views. In Proceedings. of the Internation Conference on
Software Maintenance.

Storey, D., Wong, K. and Müller, H.A. 1997. How Do
Program Understanding Tools Affect How Programmer
Understand Programs? In Proceedings. of the 4th
Working Conference on Reverse Engineering.

Systa, T. 1999. On the Relationship Between Static and
Dynamic Models in Reverse Engineering Java
Software. In Proceedings. 6th Workng Conference on
Reverse Engineering. IEEE Computer Society Press.

Team, C.P. 2011. CMMI for Acquisition Version 1.3.
Software Engineering Institute, November 2010.
CMU/SEI-2010-TR-032, Lulu.com.

Wang, Q., Wang, W., Brown, R., Driesen, K., Dufour, B.,
Hendren, L., and Verbrugge, C. 2003. EVolve: an open
extensible software visualization framework. In
Proceedings of the 2003 ACM symposium on Software
visualization.

Wing, J.M. 2006. Computational Thinking. Communication
of the ACM.

How to cite this article:

Tenoyo, B., Mursanto, P and Santoso, H.B (2017) 'Conext (Concept Explorator) A Framework For System Comprehension
With Holistic Approach In Reverse Engineering', International Journal of Current Advanced Research, 06(12),
pp. 8670-8676. DOI: http://dx.doi.org/10.24327/ijcar.2017.8676.1404
