International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: SJIF: 5,995 Available Online at www.journalijcar.org Volume 6; Issue 12; December 2017; Page No. 8188-8191 DOI: http://dx.doi.org/10.24327/ijcar.2017.8191.1307

RELATIONSHIP OF ABO AND Rh BLOOD GROUPS WITH DIABETES MELLITUS

Manju Dewan^{1*} and Rajnish Sharma²

¹Department of Zoology, DAV College, Sector 10, Chandigarh ² Department of Mass Communication, GGDSD College, Sector 32, Chandigarh

ARTICLE INFO	ABSTRACT

Article History:	A person's genetic disposition and unhealthy lifetsyle
Received 11 th September, 2017	factors that increase the risk of diabetes. Blood group
Received in revised form 25 th	certain diseases. In the present study, ABO and Rh bl
0.4.1	information about these in relation to diabetes. It is obse

October, 2017 Accepted 14th November, 2017 Published online 28th December, 2017

Key words:

Blood group, Rh factor, diabetes mellitus, normal, borderline, newly detected, known and hypoglycemic subjects

habits are some of the common os differ in their susceptibility for ood groups are tested to get more to diabetes. It is observed that there is preponderance of blood group B (35.5%) followed by group O (33.1%), A (22.5%) and AB (8.9%) in the total population. In borderline subjects, blood group O (35.7%) is more prevalent followed by B (32.8%), A (24.5%) and AB (7.05%). In diabetic subjects O blood group is more prevalent than the B, A and AB blood groups. In the total population, frequency of gene 'r' (0.58) is more than the frequency of q (0.25) and p (0.17). Same series of frequencies has been found in other categories i.e. normal, borderline, newly detected, known and total diabetic subjects. Frequency of D gene is more than the d gene in total population and in all other categories i.e. normal, borderline, newly detected, known and hypoglycemic subjects.

Copyright©2017 Manju Dewan and Rajnish Sharma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The term diabetes refers either to a deficiency of insulin or to the body's decreased ability to use insulin. Diabetes mellitus effects on all other organ systems of the body. Heredity plays an important role in the aetiology of diabetes. Blood groups are inherited character. It is a known fact that all blood groups are not alike. Every blood group contains specific antigen that generates a specific immune response when foreign substances attack the body. An additional variable, called Rhesus (Rh) factor, also differentiates blood types. A person's blood type is known to impart certain characterictics, but in this study its association with the risk of diabetes has been explored. It is worthwhile to study the relationship of diabetes with particular type of blood group. Many surveys had been undertaken to find out the relationship of ABO and Rh blood group systems and diseases. Blood groups differ in their susceptibility for certain diseases. In the present study, ABO and Rh blood groups are tested to get more information about these in relation to diabetes.

MATERIALS AND METHODS

The present epidemiological and biochemical study was undertaken in the district Sangrur, Punjab, India. The random sample survey was undertaken and 1000 subjects were selected randomly for questioning regarding different aspects of epidemiology. They were questioned personally, using a

*Corresponding author: Manju Dewan

Department of Zoology, DAV College, Sector 10, Chandigarh

questionnaire which is designed for collection of data and general information regarding various epidemiological factors. Fasting and random blood sugar levels were measured. The blood grouping was done by the technique of haemagglutination reaction. Red blood cells are agglutinated as they possess the antigen which reacts with the corresponding antibody that is present in the serum. The results were interpreted on the basis of presence or absence of agglutination.

Gene Frequencies

ABO allele frequencies were calculated by following the methods of Yoshida (1984). The sample was checked for Hardy-Weinberg proportions.

Calculations for gene frequencies for ABO blood group

For calculating the gene frequencies from the observed values, Yoshida (1984) gave the following formulae.

	P =	$\frac{1}{2}$ AB+A+O- $\sqrt{O(A+B)}$ / T
	Q =	$\frac{1}{2}$ AB+A+O- $\sqrt{O(A+B)/T}$
	r =	1-P-Q
Where	$\mathbf{P} =$	the frequency of gene A
	Q =	the frequency of gene B
	r =	the frequency of gene O
	T =	Total of A+B+AB+O

Expected frequency of A = N (2 Pr + P2), Expected frequency of B = N (2Qr + Q2)

Expected frequency of AB = N 2 PQ, Expected frequency of O = N(r) 2

Where N denotes total number of subjects in that blood group.

Rh blood groups

For Rh factor the genes are D and d and the gene frequency is calculated by the following formula

$$d = \sqrt{dd}$$
$$D = 1 - D$$

D and d stand for Rh (D), positive and negative gene frequencies respectively.

RESULTS

It is observed that there is preponderance of blood group B (35.5%) followed by group O (33.1%), A (22.5%) and AB (8.9%) in the total population (Table- 1).

 Table 1 Prevalence of blood groups in total population (N=1000)

Number	Percentage
225	22.5
335	35.5
89	8.9
331	33.1
	Number 225 335 89 331

X2: 351.31; DF: 3; p: <0.0001, Highly significant

In borderline subjects, blood group O (35.7%) is more prevalent followed by B (32.8%), A (24.5%) and AB (7.05%). In diabetic subjects O blood group is more prevalent than the B, A and AB blood groups (Table-2).

Table 2 Prevalence of ABO blood groups in totalpopulation and in different status of subjects (Normal,
Borderline, Newly detected, Known diabetic,
Hypoglycemic and Total diabetic) N = 1000

Status of subjects	Α	В	AB	0
Normal Subjects(653)	147(22.5%)	228(34.9%)	73(11.2%)	205(31.4%)
Borderline Subjects (241)	59(24.5%)	79(32.8%)	17(7.05%)	86((35.7%)
Newly Detected(55) Subjects	11(20%)	16(29.1%)	11(20%)	17(30.9%)
Known Diabetic(38) Subjects	8(21.0%)	13(34.2%)	4(10.5%)	13(34.2%)
Hypoglycaemic(13)	5(38.5%)	3(23.1%)	2(15.4%)	3(23.1%)
Total Diabetic (93)	19(20.4%)	29(31.2%)	15(16.1%)	30(32.2%)

The Chi square test is applied and significant values for total (p<0.01), normal (<0.0001) and borderline (p<0.001) have been obtained (Table-2A).

Table 3A Distribution of ABO blood groups and gene frequencies in total pouplation. (N = 1000)

Phenotypes					G	ene Fr	equen	cies
	Α	В	AB	0	р	q	r	X2
Observed	225	355	89	331	0.172	0.25	0.58	
Expected	228.52	352.5	86	336.4				
•								0.25
X2	0.054	0.018	0.105	0.09				p<0.05

Table-3A-3G give the gene and genotypic frequencies of total, normal, borderline, newly detected, known diabetic, hypoglycemic and total diabetic subjects. **Table 3B** Distribution of ABO blood groups and genefrequencies in normal subjects. (N = 653)

	Phenotypes					ene Fre	equenci	es
	Α	В	AB	0	р	q	r	X2
Observed	147	228	73	205	0.183	0.263	0.554	
Expected	153.95	235.19	9 62.86	200.42				
•								2.273
X2	0.314	0.219	1.635	0.105				p<0.05
Genotypic Fr	equencies:	AA (p2)	AO (2pr)	BB (q2)	BO (2qr)	$OO(r^2)$	AB (2pq)	
		0.033	0.20	0.069	0 291	0 307	0.096	

Table 3 C-Distribution of ABO blood groups and gene frequencies in borderline subjects. (N = 241)

Phenotypes					G	ene Fr	equenc	ies
	Α	В	AB	0	р	q	r	X2
Observed	59	79	17	86	0.173	0.225	0.602	
Expected	57.2	77.3	18.8	87.3				
-								0.287
X2		0.056	0.04	0.172	0.019			p<0.05

Genotypic Frequencies: AA (p2) AO (2pr) BB (q2) BO (2qr)OO (r²) AB (2pq) 0.0299 0.208 0.05 0.2700.362 0.078

Table 3D Distribution of ABO blood groups and gene frequencies in newly detected diabetic subjects. (N = 55)

	Pher	otypes				Gene I	requen	cies
	Α	В	AB	0	р	q	r	X2
Observed	11	16	11	17	0.21	0.26	0.53	
Expected	14.6	18.8	6.01	15.4				
								5.59
X2	0.88	0.41	4.14	0.16				p<0.05
Genotypic F	requencies	s: AA (p2)	AO (2pr)	BB (q2)	BO (2	2qr) O	$O(r^2)$	AB (2pg)
0.044	0.222 (0.067 (0.275		0.28	0	0.10	9
Table	e 3 E-I	Distribu	ition o	f ABO	bloo	d grou	ps and	gene
fre	aueno	ies in l	nown	diabet	ic sub	iecto	(N = 3)	8)
п	quene		liown	ulaber	ic suc	jeets.	$(\Pi - J)$	5)
	Ph	enotypes	1			Gene	Freque	ıcies
	Α	B	AB	0	р	q	r	X2
Observed	8	13	5	13	0.18	8 0.20	6 0.56	
Expected	10.2	13.6	3.6	11.9				
*								1.137
X2	0.47	0.026	0.54	0.101				p<0.05

 Genotypic Frequencies: AA (p2)
 AO (2pr)
 BB (q2)
 BO (2qr)OO (r²)

 AB (2pq)
 0.032
 0.201
 0.067
 0.291

Table 3F Distribution of ABO blood groups and gene frequencies in hypoglycemia subjects. (N = 13)

	Pher	otypes	(Gene Fr	equen	cies		
	Α	В	AB	0	р	q	r	X2
Observed	5	3	2	3	0.32	0.21	0.47	
Expected	5.2	3.13	1.74	2.8				
								0.062
X2	0.007	0.005	0.04	0.01				p<0.05
Genotypic (r ²) AB	Frequen B (2pq)	cies: AA ((p2) AC) (2pr)	BB (q2)) BO ((2qr)	00

0.102 0.300 0.044 0.197 Table 3G Distribution of ABO blood groups and gene

frequencies in total diabetic subjects. (N = 93)

	Phe	notypes				Gene Fr	equenci	es
	Α	В	AB	0	р	q	r	X2
Observed	19	29	15	30	0.19	0.26	0.55	
Expected	32.9	9.2	28.13	22.8				
								59.16
X2	5.87	42.6	6.12	4.5				p>0.01
Genotypic F	requencies	s: AA (p2)	AO (2pr)	BB (q2)	BO (2q	r)	$00 (r^2)$	
0.036	-		0.209		0.067		0.286	
p : Gene	frequency	of blood g	roup A					
a · Gene	frequency	of blood a	roup B					

r : Gene frequency of blood group O

Table-4 and Table-5 show the distribution of Rh factor in total population and in different status of subjects respectively.

After applying the Chi square test highly significant values have been obtained for all categories. The gene frequencies of Rh positive and Rh negative factor are given in Table-6A-6G. Frequency of D gene is more than the d gene in total population and in all other categories i.e. normal, borderline, newly detected, known and hypoglycemic subjects.

Table 4 Prevalence of Rh blood groups in total population of district Sangrur, Punjab (India)

Blood Groups	Number	Percentage
Rh Positive	897	89.7
Rh Negative	103	10.3

X2: 630.436; DF: 2; p: <0.0001, Highly Significant.

Table 5 Prevalence of Rh blood group in different statusof subjects (N = 1000).

5	(
Status of subjects	Rh Positive	Rh Negative
	(n = 897)	(n = 103)
Normal subjects	580(64.65)	73(70.87)
Borderline subjects	223(24.86)	18(17.47)
Newly detected diabetic subjects	49 (5.46)	695.82%)
Known diabetic subjects	33(3.67)	5(4.85)
Hypoglycemic subjects	12(1.33)	1(0.97)
Total diabetic subjects (93)	82(9.14)	11(10.67)

%age is calculated from the bold bracketed values.

Statistical Analysis

Status of subjects	X2	DF	р	HS/NS
Normal	393.64	1	< 0.0001	HS
Borderline	33.618	1	< 0.0001	HS
Newly Detected	20.631	1	< 0.0001	HS
Known Diabetic	9.307	1	< 0.001	HS

X2: Chi Square test, p: Probability, HS: Highly Significant, NS: Non significant, DF: Degree of Freedom,

 Table 6A Distribution of Rh (D) blood group types in total population

Phenotypes	Number	Percentile
Rh (Anti-D) +	897	0.897
Rh (Anti-D)-	107	0.103
Total	1000	0.1

d = 0.321 D = 0.68

 Table 6B Distribution of Rh (D) blood group types in normal subjects

Normal	Observation	Percentile
Rh (Anti-D) +	580	0.888
Rh (Anti-D) -	73	0.112
Total	653	0.1

d = 0.335 D = 0.665

 Table 6C Distribution of Rh (D) blood group types in borderline subjects

Normal	Number	Percentile
Rh (Anti-D) +	223	0.925
Rh (Anti-D) -	18	0.075
Total	241	0.1

d = 0.274 D = 0.726

 Table 6D Distribution of Rh (D) blood group types in newly detected diabetic subjects

Phenotypes	Number	Percentile
Rh (Anti-D) +	49	0.891
Rh (Anti-D) -	5	0.109
Total	55	0.1

d = 0.330 D = 0.669

 Table 6 E Distribution of Rh (D) blood group types in known diabetic subjects

Normal	Observation	Percentile	
Rh (Anti-D) +	33	0.868	
Rh (Anti-D) -	5	0.132	
Total	38	0.1	
d = 0.363 $D = 0.637$			

 Table 6F Distribution of Rh (D) blood group types in hypoglycemic subjects

Normal	Observation	Percentile
Rh (Anti-D) +	12	0.923
Rh (Anti-D) -	1	0.077
Total	13	0.1

d =	0.277	D = 0.722
d =	0.277	D = 0.723

 Table 6 G Distribution of Rh (D) blood group types in total diabetic subjects.

Normal	Observation	Percentile
Rh (Anti-D) +	82	0.882
Rh (Anti-D) -	11	0.112
Total	93	0.1
1 = 0.242 D = 0.657		

d = 0.343 D = 0.657

d : Gene frequency of Rh negative blood group

D : Gene frequency of Rh positive blood group

DISCUSSION

ABO blood groups differ in their susceptibility for certain diseases. Many reports have been published to show the relationship of ABO blood groups and diseases. Aird *et al.* (1954) initiated the thorough enquiry between blood groups and diseases. Aird *et al.* (1954) and Clarke (1955) were pioneers to find out the relationship between patients suffering from diabetes mellitus and ABO blood groups. In the present study, O blood group is more susceptible followed by the group B and AB blood group is more resistant one followed by group A. McConnel *et al.* (1956), Race and Sanger (1962), Bhonslee and Kulkarni(1977) found the higher incidence of diabetes in blood group A than the control group. Fequency of blood groups B and O is significantly higher and lower respectively in the patients (Coll, 2003).

These studies found the prevalence of diabetes in different blood groups like -

Worker (year) Blood group in diabetics

Roberts (1957)	В
Buckwalter (1966)	В
Sidhu <i>et al.</i> (1988)	В
Andersen and Luritzen (1960)	0
Jolly et al. (1969)	0
Chopra (1979)	AB
Malhotra (1981)	AB

Lamba *et al.* (1974) found relative incidence was found to be higher in O and B blood groups. Some of the workers found no association of diabetes with blood group ABO (Craig and wang ,1955; Machr ,1961; Berg *et al.*,1967 and Macafee ,1969, Okan *et al.*2008,Kamil *et al.*2010).

The results of the present study are in confirmation with the findings of Lamba *et al* (1974), Andersen and Luritzen (1960) and Jolly *et al.* (1969). In the total population, frequency of gene 'r' (0.58) is more than the frequency of q (0.25) and p (0.17). Same series of frequencies has been found in other categories i.e. normal, borderline, newly detected, known and total diabetic subjects. Genotypic Frequencies in the total

population for AA (p2), AO (2pr), BB (q2), BO (2qr), OO (r^{2}) , AB (2pq) are 0.029, 0.199, 0.0625, 0.29, 0.336 and 0.086 respectively. Same series of frequencies has been found in other categories i.e. normal, borderline, newly detected, known and total diabetic subjects. Genotypic Frequencies of homogenous one i.e. r^2 is followed by qr, pr, pq, q^2 and p^2 Rh negative subjects shows the more susceptibility towards diabetes as 10.6% of subjects are Rh negative in total diabetic subjects as compared to 9.1% of Rh positive subjects. Sidhu et al. (1988) also found the higher frequency of Rh negative patients in diabetes but Simpson (1962), Bucwalter (1966) and Jolly et al. (1969) could not find any significant relationship between Rh blood group system and diseases. Frequency of D gene is more than the d gene in total population and in all other categories i.e. normal, borderline, newly detected, known and hypoglycemic subjects. Study of Fagherazzi shows for the first time in a large prospective cohort that specific ABO blood groups are associated with an increased type 2 diabetes risk." The authors say that the reasons behind the association are currently unknown, but could be related to a number of factors: it has been suggested that the human ABO locus might influence endothelial or inflammation markers. ABO grouping is also associated with various molecules known to be connected to type 2 diabetes, and a recent paper concluded that ABO grouping is a factor which determines the overall gut microbe composition, which in turn affects metabolism and thus could be related to type 2 diabetes (Fagherazzi et al ,2014).

The phenotypic "ABO" blood groups are inherited antigenic substances which are found on the surface of red blood cells in addition to other tissues. Certain hypothesis advocates that genetic predisposition like "ABO" blood group would be associated with occurrence of diseases including type 2 diabetes. This study aimed to investigate the potential association between "ABO" and "Rhesus" blood groups with type 2 diabetes. Subjects with blood group "B" are at high risk while individuals with blood group "O" are at low peril of evolving type 2 diabetes. It is suggested that subjects with blood group "B" should be closely monitored by physicians as these subjects have an increased risk of type 2 diabetes (Meo *et al*, 2016).

CONCLUSION

Diabetes mellitus type 2 and blood groups are interrelated because of the broad genetic immunologic basis in both. It is concluded that the frequency of blood groups in O and B borderline is significantly higher and of AB and A is lower in the diabetics and borderline subjects.

Acknowledgement

The author is thankful to Late Dr. Dalbinder Singh Sidhu, Ex Professor in Zoology and Ex Dean Life Sciences, Punjabi University Patiala, Punjab, India, for his help and guidance throughout the research work.

Refrences

- Aird, I., Bentall, H.H. and Mohigan, J.A. (1954). Blood groups in relation to peptic ulceration, carcinoma of colon, rectum, breast, bronchus. *Brit. M.J.*, 1 : 315.
- Anderson, J. and Lauritzen, E. (1960). Blood groups and diabetes mellitus. *Diabetes*, 9 : 20.

- Berg, K., Aarseth, S., Lundevall, J. and Reinskou, T. (1967). Blood groups and genetic serum types in diabetes mellitus. *Diabetologia*, 3 : 30.
- Bhoslee, N. and Kulkarni, V.S. (1977). ABO Blood groups and some diseases : A correlation study of Marathas of Maharashtra. *Man in Indian*, 57: 163.
- Buckwalter, J.A. (1966). Diabetes mellitus and blood groups. *Diabetes*, 13 : 164.
- Chopra, P. (1979). Blood groups in relation to diabetes and asthma. M.Sc. (Hum. Biol.) Dissertation, Punjabi University, Patiala.
- Clarke, C.A. (1955). Relationship of duodenal and gastric ulceration with ABO blood groups. *Brit. Med. J.*, 2: 643.
- Coll,J (2003). Frequency of ABO blood groups among the diabetes mellitus type 2 patients. *Physicians Surg Pak.*; 13(8):453-5.
- Craig, J. and Wang, I. (1955). Blood groups in diabetes mellitus. *Glasg. Med. J.*, 36: 261.
- Fagherazzi Guy i *et al.* ABO and Rhesus blood groups and risk of type 2 diabetes: evidence from the large E3N cohort study. *Diabetologia*, December 2014 DOI:10.1007/ s00125-014- 3472-9
- Jolly, J.G., Sarup, B.M. and Aikat, B.K. (1969). Diabetes Mellitus and blood groups. J. Ind. Med. Ass., 52: 104.
- Kamil M,Al-Jarnal Han,Yusoff NM.(2010).Association of ABO blood group with diabetes Mellitus. *Libyan Journal of Medicine*,5:1-7.
- Lamba, D.L., Singha, P. and Chandra, S. (1974). A study of Diabetes in relation to blood groups and cholesterol levels. *Humangenetik*, 23: 51
- Machr, G. (1961). Distribution of ABO blood groups in diabetes. Excerpta Medica. *Med. Microbiol. Immuno. and Serology.*, 14:218.
- Malhotra, M. (1981). Distribution of ABO, Rh blood groups and secretor factor among Khatris and Aroras of Patiala (Punjab). M.Sc. (Hum. Biol.) Dissertation, Punjabi University, Patiala.
- McConnel, R.B., Pyke, D.A., Fraser Roberts, J.A. (1956). Blood groups in diabetes mellitus. *Brit. Med. J.*, II : 772.
- Mecafee, A.L. (1969). Blood groups and diabetes mellitus. J. Clin. Path., 17:39.
- Meo S.A., Rouq F.A., Suraya F., Zaidi S.Z. (2016). Association of ABO and Rh blood groups with type 2 diabetes mellitus. *Eur Rev Med Pharmacol Sci* 2016; 20 (2): 237-24.2.
- Okan US,Antal AB,Osim EE,Ita SO(2008) The relative incidene of diabetes mellitus in ABO/Rhesus blood groups in South-Eastern Nigeria. *Nigeria J.Physiol Sci.*,23:1-3.
- Race, R.R. and Sanger, R. (1962). Blood groups in Man. Blackwell Scientific Publications. Oxford and Edinburgh.
- Roberts, J.A.F. (1957). Blood groups and susceptibility to disease. *Brit. J. Prev. Soc. Med.*, 11: 107.
- Sidhu, L.S., Malhotra, P. and Singh, S.P. (1988). ABO and Rh blood groups in diabetes mellitus. *Anthrop. Anz.*, 46 (3): 269-275.
- Simpson, N.E. (1962). Multifactorial inheritance, a possible hypothesis for diabetes. *Diabetes*, 13 : 462.
- Yoshida, N. (1984). A note on gene frequency estimation in ABO and ABO like system. *Jpn. J. Hum. Genet.*, 29 : 371.