International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319 – 6505, Impact Factor: SJIF: 5.995 Available Online at www.journalijcar.org Volume 6; Issue 6; June 2017; Page No. 4097-4099 DOI: http://dx.doi.org/10.24327/ijcar.2017.4099.0438

ON QUASI *GS-OPEN AND QUASI *GS-CLOSED FUNCTIONS

Manoj Garg*

Department and Research Centre of Mathematics, Nehru Degree College, Chhibramau, Kannauj, U.P., India

ARTICLE INFO	A B S T R A C T
Article History:	In this paper, we introduce a new type of open function namely quasi *gs-open function.

Received 13th March, 2017 Received in revised form 10th April, 2017 Accepted 5th May, 2017 Published online 28th June, 2017 Further we obtain its characterizations and its basic properties. 2000 Mathematics Subject Classification: 54c10, 54c08, 54c05.

Key words:

*gs-open set, *gs-closed set, *gs-interior, *gsclosure, quasi *gs-open function.

Copyright©2017 **Manoj Garg.** This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Functions stand among the important notions in the whole of mathematical science. Many different open functions have been introduced over the years. The importance is significant in various area of mathematics and sciences. The notion of *gs-closed sets were introduced and studied by Shikha et al[4]. In this paper, we will continue the study of related functions by considering *gs-open sets and *gs-open functions. We further introduce and characterize the concept of quasi *gs-open functions.

Throughout this paper, spaces mean topological spaces on which no separation axioms are assumed unless otherwise mentioned and f: $(X, \tau) \rightarrow (Y, \sigma)$ denotes a function f of a space (X, τ) into a space (Y, σ) . Let A be a subset A of space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively.

Definition: A subset A of a topological space (X, τ) is called semi-open[2] (resp. semi- closed) if $A \subseteq cl(int(A))$ (resp. int(cl(A)) $\subseteq A$).

The semi-closure [1] of A subset of X, denoted by scl(A), is defined to be the intersection of all semi-closed sets containing A in X.

Definition: A subset A of a topological space (X, τ) is called

*Corresponding author: Manoj Garg

Department and Research Centre of Mathematics, Nehru Degree College, Chhibramau, Kannauj, U.P., India

- ĝ-closed [3] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in X. The Complement of ĝ-closed set is called ĝ-open.
- 2.*gs-closed [4] if scl(A) ⊆ U whenever A ⊆ U and U is ĝ
 -open in X. The complement of *gs-closed set is called *gs-open.

The union (resp. intersection) of all *gs-open (resp. *gsclosed) sets, each contained in (resp. containing) a set A in a space X is called the *gs-interior (resp. *gs-closure) of A and is denoted by *gs-Int(A) (resp. *gs-cl(A)) [5].

Definition: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- 1. *gs-irresolute [4] (*gs-continuous [4]) if the inverse image of every *gs-closed (resp. closed) set in Y is *gs-closed in X.
- 2. *gs-open [5] (resp. *gs-closed [5]) if f(V) is *gsopen (resp. *gs-closed) in Y for every open (resp. closed) subset of X.
- 3. *gs*-closed [5] if the image of every *gs-closed subset of X is *gs-closed in Y.

Definition: Let x be a point of (X, τ) and N be a subset of X. Then N is called a *gs-neighbourhood (briefly *gs-nbd) [5] of x if there exists a *gs-open set G such that $x \in G$ and $G \subset N$.

Quasi *gs-open Functions

In this section we introduce the following definitions.

Definition: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called quasi *gsopen if the image of every *gs-open set in X is open in Y. If the function f is bijective then the concept of quasi *gsopenness and *gs-continuity coincide.

Theorem: A function $f: X \to Y$ is quasi *gs-open iff for every subset A of X, $f(*gs-Int(A)) \subseteq Int(f(A))$.

Proof: Suppose that f is quasi *gs-open function. Since $Int(A) \subseteq A$ and *gs-Int (A) is a *gs-open set so $f(*gs-Int(A)) \subseteq (f(A))$. As f(*gs-Int(A)) is open, $f(*gs-Int(A)) \subseteq Int(f(A))$.

Conversely, Let A be *gs-open set in X such that $f(*gs-Int(A)) \subseteq Int(f(A))$. Then $f(A) = f(*gs-Int(A)) \subseteq Int(f(A))$. But $Int(f(A)) \subseteq f(A)$ so f(A) = Int(f(A)) and hence f is quasi *gs-open.

Lemma: If a function $f: X \to Y$ is quasi *gs-open, then *gs-Int($f^{1}(A)$) $\subseteq f^{1}(Int(A))$ for every subset A of Y.

Proof: Let A be any arbitrary subset of Y. Then *gs-Int(f¹(A)) is a *gs-open set in X and f is quasi *gs-open, then $f(*gs-Int(f^{1}(A)) \subseteq Int(f(f^{1}(A)) \subseteq Int(A))$. Thus *gs-Int(f¹(A)) $\subseteq f^{1}(Int(A))$.

Theorem: For a function f: $X \rightarrow Y$, the following are equivalent

- 1. f is quasi *gs-open.
- 2. For each subset A of X, $f(*gs-Int(A)) \subseteq Int(f(A))$.
- For each x ∈ X and each *gs-nbd A of x in X, there exists a neighborhood A of x in X, there exists a neighborhood B of f(x) in Y such that B ⊆ f(A).

Proof: (i) \Rightarrow (ii) Follows from theorem (2.2).

- ⇒ (iii) Let x ∈ X and A be an arbitrary *gs-nbd of x in X. Then there exists a *gs-open set B in X such that x ∈ B ⊆ A. Then by (ii), f(B) = f(*gs-Int(B)) ⊆ Int(f(B)) and hence f(B) = Int(f(B). Thus f(B) is open in Y such that f(x) ∈ f(B) ⊆ f(A).
- 2. \Rightarrow (i) Let A be an arbitrary *gs-open set in X. Then for each $y \in f(A)$, by (iii) there exists a nbd. B_y of y in Y such that $B_y \subseteq f(A)$. Since B_y is a nbd. of y so there exists an open set C_y in Y such that $y \in C_y \subseteq$ B_y . Thus $f(A) = \bigcup \{ C_y : y \in f(A) \text{ which is an open}$ set in Y. Thus f is quasi *gs-open function.

Theorem : A function $f: X \to Y$ is quasi *gs-open iff for any subset B of Y and for any *gs-closed set A of X containing f ¹(B) there exists a closed set C of Y containing B such that f ¹(C) \subseteq A.

Proof: Suppose that f is quasi *gs-open function. Let $B \subseteq Y$ and A be a *gs-closed set of X containing $f^{1}(B)$. Put C = Y - f(X - A). Clearly $f^{1}(B) \subseteq A$ implies $B \subseteq C$. Since f is quasi *gs-open so C is a closed set of Y. Moreover $f^{1}(C) \subseteq A$.

Conversely, let U be *gs-open set in X. Put B = Y - f(U) then X - U is a *gs-closed set in X containing $f^{1}(B)$. By hypothesis, there exists a closed set A of Y such that $B \subseteq A$ and $f^{1}(A) \subseteq X - U$. Hence $f(U) \subseteq Y - A$. Again $B \subseteq A$, $Y - A \subseteq Y - B = f(U)$. Thus f(U) = Y - A which is open and hence f is a quasi *gs-open function.

Theorem: A function f: $X \rightarrow Y$ is quasi *gs-open iff for any subset $f^{1}(cl(B)) \subseteq *gs-cl(f^{1}(B))$ for every subset B of Y.

Proof: Let f be a quasi *gs-open function. For any subset B of Y, $f^{1}(B) \subseteq *gs\text{-cl}(f^{1}(B))$. So by theorem (2.5), there exists a

closed set A in Y such that $B \subseteq A$ and $f^{1}(A) \subseteq *gs\text{-cl}(f^{1}(B))$. Thus $f^{1}(cl(B)) \subseteq f^{1}(A) \subseteq *gs\text{-cl}(f^{1}(B))$.

Conversely, let $B \subseteq Y$ and A be a *gs-closed set of X containing $f^{1}(B)$. Put $C = cl_{Y}(B)$, then $B \subseteq C$ and C is closed and $f^{1}(C) \subseteq *gs\text{-cl}(f^{1}(B)) \subseteq A$. Thus by theorem (2.5), f is quasi *gs-open.

Lemma: Let $f : X \to Y$ and $g : Y \to Z$ be two functions and gof : $X \to Z$ is quasi *gs-open. If g is continuous injective, then f is quasi *gs-open.

Proof: Let A be a *gs-open set in X. Then (gof)(A) is open in Z since gof is quasi *gs-open. Again g is an injective continuous function, $f(A) = g^{-1}(gof(A))$ is open in Y. Thus f is quasi *gs-open.

Quasi *gs-closed Functions

In this section we introduce the following definitions.

Definition: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called quasi *gsclosed if the image of each *gs-closed set in X is closed in Y.

Clearly every quasi *gs-closed function is closed and *gs-closed.

Remark: Every *gs-closed (resp. closed) function need not be quasi *gs-closed as shown by the following example.

Example: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{c\}, \{b, c\}, \{a, c\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by identity mapping then f is *gs-closed and closed but not quasi *gs-closed.

Lemma: If a function $f : X \to Y$ is quasi *gs-closed, then $f^{-1}(Int(A)) \subseteq *gs-Int(f^{-1}(A))$ for every subset A of Y. *Proof:* See Leema (2.3).

Theorem: A function $f: X \to Y$ is quasi *gs-closed iff for any subset A of Y and for any *gs-open set G of X containing f ¹(A), there exists an open set U of Y containing A such that f ¹(U) \subseteq G.

Proof: See theorem (2.5).

Theorem: If f: $X \to Y$ and g : $Y \to Z$ are two quasi *gsclosed function, then their composition gof : $X \to Z$ is a quasi *gs-closed function.

Proof: Proof is definition based.

Theorem: Let $f: X \to Y$ and $g: Y \to Z$ be any two functions then

- a. If f is *gs-closed and g is quasi *gs-closed, then gof is closed.
- b. If f is quasi *gs-closed and g is *gs-closed, then gof is *gs*-closed.
- c. If f is *gs*-closed and g is quasi *gs-closed, then gof is quasi *gs-closed.

Theorem: Let $f: X \to Y$ and $g: Y \to Z$ be two functions such that their composition gof : $X \to Z$ is quasi *gs-closed

- a. If f is *gs-irresolute serjective, then g is closed.
- b. If g is *gs-continuous injective, then f is *gs*-closed.

Proof: Let F be an arbitrary closed set in Y. Since f is *gsirresolute, $f^1(F)$ is *gs-closed in X. Again since gof is quasi *gs-closed and f is surjective, $(gof(f^1(F))) = g(F)$ is closed set in Z. Thus g is closed function. Let F be any *gs-closed set in X. Since gof is quasi *gsclosed, (gof)(F) is closed in Z. Again g is *gs-continuous injective function, $g^{-1}(gof(F)) = f(F)$ is *gs-closed in Y. Thus f is *gs*-closed.

Theorem: Let X and Y be two topological spaces. Then the function $g : X \to Y$ is a quasi *gs-closed if and only if g(X) is closed in Y and $g(V) \setminus g(X \setminus V)$ is open in g(X) whenever V is *gs-open in X.

Proof: Let $g : X \to Y$ is a quasi *gs-closed function. Since X is *gs-closed g(X) is closed in Y and $g(V) \setminus g(X \setminus V) = g(V) \cap g(X) \setminus g(X \setminus V)$ is open in g(X) when V is *gs-open in X.

Conversely, let g(X) is closed in Y, $g(V) \setminus g(X \setminus V)$ is open in g(X) when V is *gs-open in X and let F be closed in X. Then $g(F) = g(X) \setminus (g(X \setminus F) \setminus g(F))$ is closed in g(X) and hence, closed in Y.

Corollary: Let X and Y be two topological spaces. Then a surjection function g: $X \rightarrow Y$ is quasi *gs-closed if and only if $g(V) \setminus g(X \setminus V)$ is open in Y whenever V is *gs-open in X.

Corollary: Let X and Y be two topological spaces and let g: $X \rightarrow Y$ be a *gs-continuous, quasi *gs-closed surjective function. Then the topology on Y is $\{g(V) \setminus g(X \setminus V) : V \text{ is *gs-open in } X\}$.

Proof: Let G be open in Y. Then $g^{-1}(G)$ is *gs-open in X and $g(f^{1}(G) \setminus g(X \setminus g^{-1}(G)) = G$. Hence all open sets in Y are of the form $g(V) \setminus g(X \setminus V)$, V is *gs-open in X. Also all sets of the form $g(V) \setminus g(X \setminus V)$, V is *gs-open in X, are open in Y from corollary (3.10).

Definition: A topological space (X, τ) is said to be *gsnormal if for any pair of disjoint *gs-closed subsets F_1 and F_2 of X, there exists disjoint open sets U and V such that $F_1 \subseteq U$ and $F_2 \subseteq V$. **Theorem:** Let X and Y be topological spaces with X is *gsnormal. If g: $X \rightarrow Y$ is a *gs-continuous quasi *gs-closed surjective function. Then Y is normal.

Proof: Let F_1 and F_2 be disjoint closed subsets of Y then $g^{-1}(F_1)$ and $g^{-1}(F_2)$ are disjoint *gs-closed subsets of X. Since X is *gs-normal, there exists disjoint open sets G_1 and G_2 such that $g^{-1}(F_1) \subseteq G_1$ and $g^{-1}(F_2) \subseteq G_2$. Then $F_1 \subseteq g(G_1) \setminus g(X \setminus G_1)$ and $F_2 \subseteq g(G_2) \setminus g(X \setminus G_2)$. Further by corollary (3.10), $g(G_1) \setminus g(X \setminus G_1)$ and $g(G_2) \setminus g(X \setminus G_2)$ are open sets in Y such that $g(G_1) \setminus g(X \setminus G_1) \cap g(G_2) \setminus g(X \setminus G_2) = \Phi$. Thus Y is normal.

References

- 1. Crossley S.G. and Hildebrand S.K.: Semi closure, *Texas j. Sci.*, 22, 1971, 99-112.
- Levine N.: Semi open sets and semi continuity in topological spaces, *Amer. Math. Monthly*, 70 1963, 36-41.
- 3. Veera Kumar M.K.R.S.: ĝ-closed sets and Ĝ LC functions, *Indian J. Math.* 43(2), 2001, 231-247.
- 4. Agarwal S., Goel C. K. and Garg M.: Between semiclosed sets and generalized semi-closed sets, *Ultra Sci.Phy. Sci.*, 22(2), 2010, 539-550.
- 5. Agarwal S., Garg M. and Goel C. K.: On *gshomeomorphisms in topological spaces, *jour. Int. acd. Phy. Sci*, 11(2007), 63-70.

How to cite this article:

Manoj Garg (2017) 'On Quasi *Gs-Open And Quasi *Gs-Closed Functions', *International Journal of Current Advanced Research*, 06(06), pp. 4097-4099. DOI: http://dx.doi.org/10.24327/ijcar.2017.4099.0438
