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A R T I C L E  I N F O A B S T R A C T

The economics heuristic of Clarke & Wright is the principle and reference model for
solvingthe classical vehicle routing problem. In this paper we propose a new version of
this method allowing to solve efficiently the multi-objective vehicle routing problem
thanks to the preferential reference mark of dominance method. The main result is
obtaining the set of efficient solutions E(P) but in a spread out way. A didactic example
validates our step.

INTRODUCTION

The logistics and transports are in the center of many problems
met in the industry and in the management of goods and persons.
Thus, it is not surprising to see that vehicle routing problems
which constitute a facet of the logistics are a part of main
problems studied in operations research notably those making
part of the combinatorial optimization [1]. The Vehicle Routing
Problem (VRP) is a classical combinatorial optimization problem
which consists to determine a set of roads for a minimal distance
permitting to visit a set of customers from a central deposit (see
eg [2], [3], [4], [5] and [6]). In the standard version of this
problem, the fleet of vehicles is considered like being
homogeneous and unlimited. It is localized in a unique disposal
with autonomy allowing to serve all customers. Each vehicle has
a total loading capacity of C units of products and with a limited
tour duration to D units of time. Each customer i must be visited
in order to deliver to him a demand of q units that requires s time
of service. The distance c between each couple of localizations i
and j is known and symmetric. In addition to this, one supposes
that the matrix of the distances respects the triangular inequality.
The objective of the VRP is to minimize the covered distance by
the vehicles in order to deliver the quantities asked by the
customers and respecting the constraints of capacity and the
different tours duration.

Therefore, many of theoretical stakes but also practical and
economic are connected to this family of problems leading the
existence of a lot of solving methods. Among these solving
methods for Vehicle Routing Problem is the economics
heuristic of Clarke and Wright. Its mono-objective version is

one of the first heuristic proposed to solve the Vehicle
Routing Problem with constraint of capacity. (see [10], [11],
[13]).

The economics heuristic of Clarke and Wright is very simple
of application (see [7], [9], [2]). It remains a basic method that
knew many variants in which the aim is, on the one hand, to
improve it and on the other hand to solve other many kinds of
VRP, for example the problem of Vehicles Routing Problem
Time Window(VRP/TW).(see[15], [17], [18])

The aim of this work is to hybrid the economics heuristic of
Clarke & Wright and the preferential reference mark of
dominance method in order to solve the multiobjective
vehicle routing problem [19], [20], [21]. This approach finds
its interests in one of three approaches identified by Ulungu
and Teghem [22], especially the methodological approach, to
solve the multiobjective combinatorial optimization problems.
Through this didactic example, we prove the performances of
this adapted method justified by the good quality of the
obtained solutions.

Thus, to present all this, we organized this paper as follows:
section 2 presents mathematical formulation of the
multiobjective vehicle routing problem and section, 3 present
the Preferential reference mark of dominance method, 4
concerns the presentation of Clarke and Wright's economics
heuristic principle. As for the multiobjective context of the
economics heuristic of Clarke and Wright, it will be presented
in section 5. In the following section the didactic example is
solved by our adapted method. Finally, we present a
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conclusion on observations of E(P) obtainment and some
issues of future research.

Mathematical formulation of multiobjective vehicle routing
problem

Let be considered K objectives functions and v the number of
delivery vehicles with a maximal capacity Q intended to serve
all customers indicated by the set V from the central deposit
during a maximal duration time T. The mathematical
formulation of this multiobjective problem of vehicles routing
is the following :

Interpretation of the different constraints of the vehicle
routing problem is:

1. each customer i∈ V-\{0\} is visited one and only one
time,

2. each vehicle l arriving at the customer j leaves from
there.

3. and
4. each vehicle l leaving the depot comes back to it,
5. respect of the maximal capacity Q of vehicles,
6. respect of the maximal duration time T of routing,
7. elimination of the under-tours to guarantee the

connection of the different vehicle routing,
8. precise that it is a combinatorial optimization.

Solve problem (P) consists to find the entire set or part of the
efficient set noted E(P)

Thus this problem raises from multiobjective combinatorial
optimization. It is about to find all or a part of Pareto optimal
solutions E(P). It would be illusory to solve it by using exacts
methods because of its complexity. In general this complexity
is coming from the number of objectives functions and/or

from the constraints and the kind of decision variables.
Therefore, the use of a heuristic is required. Even since, it is a
good approximation E(P) of E(P) that we must generate.

Preferential reference mark of dominance method

Based on preference reference mark to handle dominance
notion in feasible solution set of (P). interested reader  can
consult pages (see [23],[24],[25],[26] and [27]).

Definitions

1. Reference mark of dominance of a railable solution a is
often referred to an orthonormal reference mark of
origin a, dividing the space in four areas of preference in
accordance to the diagram of figure 1 below.

2. Let us now consider the objectives space O of a multi-
objective combinatorial optimization problem, z ,z ∈O and V(z ) a neighborhood of z . It is said that the
solution z ∈ V(z ) certainly improves z if z is
situated in the non-dominated solutions area of the
preferential reference mark of z . In this case, the
acceptance probability of z equals 1. It improves z
with an acceptance probability ρ, 0 < ρ< 1 when it is
situated in an indifference area of the z preferential
reference mark, and with a nil acceptance probability in
the dominated solutions area. In other words, if ρ ≡ℙ(acceptance of neighborhoods z of z ) then :

ρ = 1 if z ∈ III0 < < 1 z ∈ II ∪ IV
ρ = 0 if z ∈ I }

3. Let us consider A and B two efficient solutions of a
multiobjective combinatorial optimization problem. One
says the solution A is more efficient than the solution B
if and only if it dominates B in the privileged direction
of the decision maker.

The notion of efficiency of a solution is connected to the
weights assigned to the objectives defined by the decision
maker.

Stage of Dominance Preferential Reference Mark Method

Essential of this method is described on the following

Figure 1 Preferences zones in the dominance relation
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references :(Okitonyumbe & al. 2013, 2014 and 2015). Below
we present the algorithm stages.

Input:
D : Set of admissible solutions
O= F(D) = ( ( )) ,…, , ∈ .
Output:E(P) :  Set of efficient solutions.
Start
E(P)← ∅
Representgraphically O
Do whileO≠ ∅do

Choose z in O
Draw the preferential reference mark of dominance of z

For in O ∖ {z}do
If is situated in thenon-dominated solutions area then( ) ←E(P)∪ { }← O ∖ { }
Endif
If is situated in the dominated solutions areathen← O ∖ { }
Endif
Ifthe non-dominated solutions areais empty then( ) ←E(P)∪ { }← O ∖ { }
Endif
Next
If is situated inindifference area then←( ) ←E(P)∪ { }← O ∖ { }
Endif
Loop
Choose z in E(P)
Draw the preferential reference mark of dominance of z
For in E(P) ∖ {z}do
If is situated in thenon-dominated solutions area then( ) ←E(P∖ {z}
Endif
If is situated in the dominated solutions areathen( ) ←E(P ∖ { }
Endif
Next
DisplayE(P)
End

Please insert: Note that the efficiency of this algorithm was
discussed in (Okitonyumbe & al. 2013).

The following section is devoted to outline Clarke & Wright
heuristic to be adapted for solving MOCO problem.

Clarke & Wright economics heuristic

The economics heuristic of Clarke and Wright is applied
when m=1 (classical case). Its principle is based on the
calculation of savings realized in uniting two partial routing
or two sequences of roads [28], [7], [8]. In the initialization,
each customer i ∈ V ∖ {O}generates a road (O − i − O)
joining it by a return journey to the depot. The figure 2 shows
it.

From two of these roads, for two customers i and j, it is

elementary to calculate the profit δ realized in forming only
one road (O − i − j − O):

δ = c + c − c , ij ∈ V ∖ {O}, i ≠ j
This profit remains the same if two roads (O −⋯− i −O)and(O − i −⋯− O)are merged in the road.
The initial stage of Clarke & Wright method consists to
therefore calculate the matrix of saving :

δ , ij ∈ V ∖ {O}, i ≠ j
Concerning the construction of the routing, two versions are
possible : the parallel version that elaborates the simultaneous
different tours and the sequential version that constructs the
tours one after the other.

In the two versions, once the link established between two
customers, it becomes definitive. This heuristic can be
considered therefore like a gluttonous heuristic. In particular:

1. In the parallel version, the profits δ are considered in
the decrease order. The first tour(O − i − j − O)that is
admissible, that is say verifying the capacity autonomy
constraints,…, is formed.

The process is pursued until the moment when all customers
are integrated in one of the formed tours.

2. In the sequential version, in the first step, a partial tour(O − i − j − O)is generated on basis of the biggest
admissible profit. Only the profitsδ and δ are
considered to prolong the tour either(O − k − i − j − O)
or (O − i − j − l − O) with a condition, of course, these
tours must remain admissible.

For each iteration, the addition of a customer in first or in last
position corresponding to the biggest admissible profit is
achieved until the moment when this tour cannot be
prolonged without breaking the constraints. In this case,
another tour is constructed with the help of the customers not
yet affected.

Remark

It is noted that, the parallel version often gives better results.
But a weakness of the economics heuristic of Clarke and
Wright is its propensity : that is the creation of circular roads
around the depot. Several attempts for remedying to that have
been proposed, notably by modifying the profits :

δ ⟶ δ′ = c + c − λc
with help of a parameter λto fix.

Figure 2 Principe de l’heuristique de Clarke & Wright

0
0
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Adaptation of the economics heuristic of Clarke and Wright
to the multiobjective context

In this section, in conformity with the three proposed
approaches by Ulungu and Teghem [22], we have tried to
adapt the economics heuristic of Clarke and Wright to the
multiobjective context.

Parameters method adjustment
Savings calculation

The Savings are calculated in taking account of each objective
by using the following formula :s = c + c −c ; i, j ∈ V\{o} ; i ≠ j, k = 1, … , m.
The realized profit by joining two segments of roads for two
customers i and j in only one road (O − i − j − O)is a line
matrix or column matrix of order m that assigns a value to
each objective. It is the same way when one proceeds by a
junction of two segments of roads(O −⋯− i − O) and (O − i −⋯− O)into a road (O −⋯−i − j −⋯− O).

At the initial stage of the methods, one calculates the matrix
of the profits that is a tabular in which each compartment is a
line matrix or column matrix of order m (see figure 2 of the
paragraph 4). This tabular can be written as following :

[s ]; i, j ∈ V\{o} ; i ≠ j, k = 1, … , m.

Efficient solutions generating

The profits vector s i, j ∈ V\{o} ; i ≠ j, k = 1, … , m.
generate a cloud of points in the space. The application of the
preference reference mark of dominance, as much time as
necessary, produce the sets of efficient solutions by step.
These different sets of efficient solutions lead us in the roads
construction.

Roads Construction

There exists two methods of roads construction by economics
heuristic of Clarke and Wright called parallel version and
sequential version.

A. Parallel version
The profits are considered in order of efficiency in the
Pareto sense and the first tour (O − i − j − O) which is
admissible, that is say, verifying the constraints of
capacity, of autonomy,..., is formed. The process is
pursued until the moment when all customers are
integrated in one of the formed tours.

B. Sequential version

After having generated at the first stage a partial tour(O − i − j − O)on the basis of efficiency notion of the
admissible solutions, only the profits s and s are
considered for prolonging the tour

Table 1 matrix of distances in kilometers and demands in tons
N° 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 - 15 28 30 22 27 21 22 20 36 63 120 22 63 12 27
1 - 21 32 32 41 35 32 22 52 25 37 18 25 22 22
2 - 18 30 46 47 50 42 45 54 40 54 54 18 20
3 - 18 36 43 52 50 24 42 56 49 42 54 36
4 - 18 27 40 43 21 12 43 38 12 49 63
5 - 16 33 42 15 51 72 55 51 38 37
6 - 18 30 32 23 65 52 23 58 40
7 - 15 35 53 37 39 53 55 56
8 - 28 52 38 64 52 52 43
9 - 43 25 42 43 39 72

10 - 40 53 35 64 65
11 - 62 26 42 37
12 - 33 53 38
13 - 62 25
14 - 40d - 3 3 4 2 4 2 3 4 5 3 4 2 5 4 3

Table 2 Cloud points representing savings in distance and priority
2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 (22,29) (13,28) (5,27) (1,26) (1,25) (5,24) (13,23) (-1,22) (53,21) (98,20) (19,19) (53,18) (5,17) (20,16)
2 - (40,27) (20,26) (9,25) (2,24) (0,23) (6,22) (14,21) (47,20) (108,19) (-4,18) (47,17) (22,16) (35,15)
3 - - (34,25) (21,24) (8,23) (0,22) (0,21) (42,20) (51,19) (94,18) (3 ,17) (51,16) (-12,15) (21,14)
4 - - - (31,23) (16,22) (4,21) (-1,20) (37,19) (73,18) (99,17) (6,16) (73,15) (-15,14) (-14,13)
5 - - - - (32,21) (16,20) (5,19) (48,18) (39,17) (75,16) (-6,15) (39,14) (1,13) (17,12)
6 - - - - - (25,19) (11,18) (25,17) (61,16) (76,15) (-9,14) (61,13) (25,12) (8,11)
7 - - - - - - (27,17) (23,16) (32,15) (105,14) (5,13) (32,12) (-21,11) (-7,10)
8 - - - - - - - (28,15) (31,14) (102,13) (-22,12) (31,11) (-20,10) (4,9)
9 - - - - - - - - (56,13) (131,12) (16,11) (56,10) (-1,9) (-9,8)

10 - - - - - - - - - (143,11) (32,10) (91,9) (11,8) (25,7)
11 - - - - - - - - - - (80,9) (157,8) (90,7) (110,6)
12 - - - - - - - - - - - (52,7) (-19,6) (11,5)
13 - - - - - - - - - - - - (13,5) (65,4)
14 - - - - - - - - - - - - - (-1,3)

Legend :   Efficient solutions of the first level Efficient solutions of the  second  level Efficient solutions of the third level Efficient solutions of the fourth level

Efficient solutions of the fifth level Efficient solutions of the sixth level Efficient solutions of the seventh level Efficient solutions of the eighth  level

Efficient solutions of the  ninth level Efficient solutions of the tenth level
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either (O − k − i − j − O) or (O − i − j − l − O), on
condition of course these
tours remain admissible.

For each iteration, the addition of a customer in first or in last
position corresponding to the biggest admissible profit

achieved until the moment when this tour can no longer be
prolonged without breaking the constraints. In this case,
another tour is constructed with the help of the customers not
yet affected, on the basis of efficiency of savings.

Definition

Let be considered A and B two efficient solutions of a
multiobjective combinatorial optimization problem, one says
that the solution A is more efficient than the solution B if and
only it has a bigger value that B on the privileged direction
given by the decision-maker. The efficiency solution notion
be bound by weights assigned to the objectives by the
decision-maker.

Didactic example

A pharmaceutical industry wants to test a new product on the
market. It possesses a warehouse and a fleet of vehicles with a
maximum delivery capacity of 8 tons a vehicle. The demands
of 15 customers are known (see tabular 1). The distances
between the customers are symmetrical and verify the
triangular inequality. The customers are classified according
to the decrease order of priority that is encoded of 1 to 15.

Decision maker concerns

The different decision-maker concerns for organizing of the
distribution routing are:

1. minimized the covered distances,
2. minimized the fleet size,
3. maximized the customers priority.

The cost is 25 UM per kilometer covered and the fixed cost of
a vehicle amounts to 2500 UM.

Cloud points representing savings in distance and priority
between two customers to join

In a space with two dimensions, respectively the profit in
distance and in priority, we present the coordinates of partial
tours visiting two customers. The dimension "size of the fleet"
to minimize will intervene in roads building while respecting
the capacity constraints of vehicles.

Efficient solutions

Let us note that E (P), the set of efficient solutions obtained at
the stage l, thus we have: Initially for l=1, the set of solutions
potentially efficient generated by the Preferential reference
mark of dominance method is: E (P)={(22,29), (40,27),
(53,21), (98,20), (108,19), (143,11)} corresponding
respectively to the following capacity {6,7,6,7,7,7}

After suppressing of the efficient solutions of first stage, we
obtain at the second stage:

E (P)={(105,14),(99,17),(94,18),(110,6),(13,28),(20,26),(3
4,25),(51,19),(47,20)}E (P)={(10,13),(76,15),(75,16),(73,18),(5,27),(9,25),(21,24
),(31,23),(32,21)}E (P)={(91,9),(61,16),(53,18),(73,15),(37,19),(16,22),(8,23
),(5,24),(1,26)}E (P)={(89,7),(80,9),(61,13),(25,19),(14,21),(13,23),(16,20
),(2,24),(1,25)}

Table 3 Roads construction by the parallel version
Solution Capacity Distance Tour
(143,11) 7 223Km (0-10-11-0)
(108,19) 10 (0-10-11-2-0) Notallowable
(98,20) 7 76Km (0-2-3-0)
(53,21) 10 (0-10-11-1-0) Not allowable
(40, 27) 10 (0-1-10-11-0) Not allowable
(22,29) 10 (0-1-2-3-0) Not allowable

(105,14) 10 (0-10-11-7-0) Not allowable
(99-17) 9 (0-10-11-4-0) Not allowable
(94,18) 11 (0-10-11-3-0) Not allowable
(110,6) 10 (0-10-11-15-0) Not allowable
(13,28) 10 (0-2-3-1-0) Not allowable
(20,26) 9 (0-4-2-3-0) Not allowable
(34,25) 9 (0-2-3-4-0) Not allowable
(51,19) 10 (0-2-3-10-0) Not allowable
(47,20) 10 (0-10-2-3-0) Not allowable

(102,13) 11 (0-10-11-8-0) Not allowable
(76,15) 9 (0-10-11-6-0) Not allowable
(75,16) 11 (0-10-11-5-0) Not allowable
(73,18) 9 (0-4-10-11-0) Not allowable
(5,27) 5 69Km (0-1-4-0)
(9,25) 11 (0-5-2-3-0) Not allowable

(21,24) 11 (0-2-3-5-0) Not allowable
(31,23) 9 (0-1-4-5-0) Not allowable
(32,21) 6 64Km (0-5-6-0)
(91,9) 12 (0-13-10-11-0) Not allowable

(61,16) 9 (0-6-10-11-0) Not allowable
(53,18) 9 (0-14-1-4-0) Not allowable
(73,15) 10 (0-1-4-13-0) Not allowable
(37,19) 10 (0-1-4-9-0)  Not allowable
(16,22) 12 (0-1-4-6-5-0) Not allowable
(8,23) 13 (0-2-3-6-5-0)  Not allowable
(5,24) 10 (0-7-1-4-0)  Not allowable
(1,26) 9 (0-5-1-4-0)  Not allowable
(90,7) 11 (0-10-11-14-0) Not allowable

(61,13) 11 (0-5-6-13-0) Not allowable
(80,9) 9 (0-10-11-12-0) Not allowable

(14,21) 12 (0-9-2-3-0) Not allowable
(14,23) 9 (0-8-1-4-0)   Not allowable
(25,19) 9 (0-5-6-7-0) Not allowable
(16,20) 9 (0-7-5-6-0) Not allowable
(2,24) 9 (0-6-2-3-0) Not allowable
(65,4) 8 115Km (0-13-15-0)

(56,13) 9 (0-9-10-11-0) Not allowable
(47,17) 12 (0-13-2-3-0) Not allowable
(19,19) 7 94Km (0-12-1-4-0)
(11,18) 10 (0-5-6-8-0) Not allowable
(6,22) 11 (0-8-2-3-0) Not allowable

(39,17) 9 (0-10-5-6-0) Not allowable
(4,21) 10 (0-6-1-4-7-0)  Not allowable
(52,7) 10 (0-12-13-15-0) Not allowable

(27,17) 7 57Km (0-7-8-0)
(35,15) 15 (0-13-15-2-3-0)  Not allowable
(32,15) 14 (0-8-7-10-11-0)  Not allowable
(25,17) 11 (0-5-6-9-0)  Not allowable
(5,19) 13 (0-6-5-8-7-0) Not allowable

(23,16) 12 (0-8-7-9-0) Not allowable
(31,14) 10 (0-10-8-7-0) Not allowable
(32,12) 12 (0-8-7-13-0) Not allowable
(5,17) 9 (0-14-1-4-0)   Not allowable

(32,10) 12 (0-8-7-9-0) Not allowable
(22,16) 11 (0-14-2-3-0) Not allowable
(3,17) 14 (0-2-3-12-1-4-0) Not allowable

(25,12) 10 (0-5-6-14-0) Not allowable
- 5 72Km (0-9-0)
- 4 24Km (0-14-0)
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E (P)={(65,4),(56,13),(37,17),(19,19),(6,22)}E (P)={(56,10),(39,17),(4,21),(11,18)}E (P)={(52,7),(35,15),(27,17)}E (P)={(32,15),(25,17),(5,19)}E (P)={(23,16),(31,14),(32,12),(5,17)}E (P)={(32,10),(22,16),(3,17),(25,12)}

Now, we can go along to the construction of roads

Roads construction

Roads construction in Parallel method

After the execution of the three stages: E (P), E (P), E
without success, we are able to notice that it remains two
customers 9 and 14 when the tour (0-9-14-0) isn't allowable
because it breaks the capacity constraint of the vehicles.
Whence the construction of two elementary tours (0-9-0) and
(0-14-0). Then, the solution obtained by the parallel version is
(732,120,8) composed of eight tours : (0-10-11-0), (0-2-3-0),
(0-5-6-0), (0,13-15-0), (0-12-1-4-0), (0-7-8-0), (0-9-0) and (0-
14-0) and covering a total distance of 732 km with a total
priority of 120.

Sequential method

The obtained solutions by the sequential version are
composed of seven tours : (0-10-11-0), (0-2-3-0), (0,13-15-0),
(0-12-5-6-0), (0-7-1-4-0), (0-8-14-0) and (0-9-0) whence the
global cost is 37000UM and the covered distance is 780km
with total priority of 120.

With a similar reasoning, by initializing the round with the
solutions: (108,19), (98,20), (53,21), (40, 27) and (22,29) we
obtain respectively the following solutions :

1. Solution:  (833, 120,8) corresponding to the rounds: (0-
2-11-0), (0-1-10-0), (0-2-3-0), (0-7-12-15-0), (0-5-6-0),
(0-8-14-0), (0-9-0) and (0-13-0) .

2. Solution: (745, 120,8)  conforms to the rounds:  (0-1-11-
0), (0-2-3-0), (0-4-5-0), (0-12-13-0), (0-7-6-10-0), (0-8-
15-0), (0-9-0) and (0-14-0).

3. Solution: (754, 120,8) appropriate with the rounds:  (0-
1-10-0), (0-2-3-0), (0-4-11-0), (0-5-6-0), (0-7-8-0), (0-
12-13-0), (0-14-15-0) and (0-9-0).

4. Solution: (754, 120, 8)corresponding with the Rounds:
(0-2-3-0), (0-1-10-0), (0-4-11-0), (0-5-6-0), (0-7-8-0),
(0-12-13-0), (0-14-15-0) and (0-9-0).

5. Solution: (862, 120, 8) conforms to the rounds:  (0-1-2-
0), (0-10-11-0), (0-5-6-0), (0-7-8-0), (0-12-13-0), (0-14-
15-0) and (0-9-0).

RESULTS AND DISCUSSION

The obtained solutions by the sequential method are :
(780,120,7), (833,120,8), (745,120,8)$, $(754,120,8) and
(862,120,8) but the decision maker choice must be worked on
two solutions : (780,120,7) and (745,120,8$ because the other
are dominated. If it were asked to us to give a point of view to
the decision maker, it is the first solution which we would
have advised to choose because the additional cost generated
by the increase of the distance that is 35 Km X 25 Um/Km =
875 Um is negligible compared to the fixed cost of a vehicle
which amounts to 2500 UM.

CONCLUSION AND PERSPECTIVES

As the most used of heuristics in multiobjective optimization,
the economics heuristic of Clark and Wright is dedicated to
mono-objective optimization. This work is the best adaptation
of this heuristic to multiobjective optimization. Through the
didactic example of the results obtained above we see that this
adaptive method is the best method to solve the
multiobjective vehicles routing problems with an unlimited
fleet and unique depot. Besides we have proved, in this paper
that, the sequential version gave the better result than the
parallel version in the multiobjective context, that is the
contrary in mono-objective.

It is also necessary to add the fact that the sequential version
permitted us to get these solutions in nine iterations whereas
the parallel version drove us until sixty-five iterations creating
thus several circular roads around the depot. Indeed, it
reduced the size of the fleet to seven vehicles while keeping
the same total priority than the parallel version. In the future
works we will try to program the sequential version of this
multiobjective version of economics heuristic of Clarke and
Wright in order to solve lots of problems.
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