

Available Online at http://journalijcar.org

International Journal of Current Advanced Research Vol 5, Issue 12, pp 1606-1611, December 2016

International Journal of Current Advanced Research

ISSN: 2319 - 6475

RESEARCH ARTICLE

DETERMINATION OF STABILITY CONSTANT AND RELATED THERMODYNAMICS OF BIVALENT TRANSITION METAL COMPLEXES WITH DERIVATIVE OF SCHIFFS BASE AS LIGANDS

Prem Mohan Mishra¹., Govind Singh²., Jai Prakash Mishra³ and Veena Mishra⁴

¹Department of Chemistry M L S M College, Darbhanga, Bihar-846004 ²Vill – Bijulia, PO – Sher Bijulia, Dist. Darbhanga ³Vill – Kahara, Dist – Saharsa ⁴Dighiwest, Darbhanga-846004

ARTICLE INFO

Article History:

Received 8th September, 2016 Received in revised form 16thOctober, 2016 Accepted 26th November, 2016 Published online 28th December, 2016

ABSTRACT

Schiff's base ligands were synthesized by the condensation reaction of salicylaldehyde with 7- hydroxy naphthalene – 2 – amine. Nitrate salts of divalent cobalt, nickel, copper and zinc were estimated by standard volumetric and gravimetric methods. Ligand was analysed for elements by literature methods. pH metric titrations were carried out in an inert atmosphere of nitrogen gas at constant ionic strength of 0.1M KNO₃ with the help of digital pH meter and stability constant of complexes of these metals with the ligands synthesized were computed by Irving- Rossoti technique¹ modified by Calvin Bjerrum² at temperature 298K

The stability constant values of metals for the given ligand at the given temperature were found to be in the order Cu(II) > Ni(II), Co(II) > Zn (II).

This result is in agreement with the natural order proposed by Irving-William.

© Copy Right, Research Alert, 2016, Academic Journals. All rights reserved.

INTRODUCTION

In continuation of our previous work here also, we have been interested in studying the stability of complexes of transition metals with biologically active ligands.

Here we are presenting determination of stability constant and related thermodynamic parameters of complex compounds using ligands synthesised from salicylaldehyde with 7-Hydroxy naphthalene 2 – amine with bivalent transition metals i.e. Co(II), Ni(II), Cu(II) and Zn(II).

Schiff's base offers a versatile and flexible series of ligands capable to bind with variety of metal ions to give complexes with varying properties. These complexes are biologically active³, have wide potential applications in many fields such as catalysis⁴, electrochemistry⁵ and medicines like anti tumour, anti viral⁶, anti cancer⁷ and other many anti bacterial agents⁸.

Metal ions play vital role in a vast number of widely different biological processes. The interaction of these ions with biologically active ligands is a subject of considerable interest. Some of the biologically active compounds act via Chelation⁸. A large number of such chelates have been synthesized, their structure and activity have been studied, but little is known about its stability in solution which will be its functioning condition.

Experimental

Nitrate salts of divalent Co, Ni, Cu and Zn all were E. Merck. All other chemicals used were Anal R grade and used without further purification. Elemental analysis of metal salts were

done by volumetric and gravimetric methods¹¹. Double distilled and deionised water was used throughout the experiment. All titrations were done in aqueous-dioxane medium in the ratio 3:2 (v/v). Dioxane was purified by standard method.

Schiff's base ligands were synthesised by reported method¹² 2.6 g salicylaldehyde in solution were mixed with 3.0 g 7 – Hydroxy naphthalene – 2 – amine. The mixture was refluxed in the presence of glacial acetic acid for 2 – 2.5 hours. The solution was concentrated and cooled to 0^{0} C. The product obtained was filtered, washed several times and recrystallised from ethanol. The yield of product was nearly 2.10 g

7' – Hydroxynaphthyl – 2 – hydroxy benzene Carbaldimine (HNBCI)

Solution of metal salts, ligands, electrolytes etc were prepared in doubly distilled CO_2 free water – strength of various solutions used were tabulated in table – 1.

pH metric titration of acid, acid + ligand and acid + ligand + metal ion solutions were done at constant ionic strength of 0.1 M KNO₃ at temperature 298k in an inert atmosphere of nitrogen.

The same process of titration were repeated for all the four Co, Ni, Cu and Zn metal ions. The change in colour and appearance of turbidity at particular pH value were recorded simultaneously.

The change in pH of the solutions with each addition of alkali was recorded in Table no. 2.

RESULTS

A graph was plotted between pH meter reading [B] and volume of alkali added in each case, graph-1. The three titration curves obtained for each metal ions are acid titration curve (a), ligand titration curve (b) and complex titration curve (c) respectively.

Table No 1 Concentrations Used In the Experiment

Metal / Ions	V° (mL)	Y	No	Eo	\mathbf{T}_{L}^{O}	T_{M}^{O}
Co (II)	100	1	1.0 (M)	1.0 x 10 ⁻² (M)	2.4 x 10 ⁻³ (M)	5.0 x 10 ⁻⁴ (M)
Ni(II)	100	1	1.0 (M)	1.0 x 10 ⁻² (M)	2.4 x $10^{-3} (M)$	5.0×10^{-4} (M)
Cu(II)	100	1	1.0 (M)	1.0 x 10 ⁻² (M)	2.4 x 10 ⁻³ (M)	5.0×10^{-4} (M)
Zn(II)	100	1	1.0 (M)	1.0 x 10 ⁻² (M)	2.4 x 10 ⁻³ (M)	5.0×10^{-4} (M)

The values of volumes $(V_1, V_2, \& V_3)$ corresponding to the same pH values were read from acid, ligand and complex titration curves (a), (b) and (c) respectively from the experimental curves at temperature 298 K given in graph 1.

Table No. −2

Volume of alkali consumed in different titrations of acid, acid + ligand and acid + ligand + metal ion solution.

Ligand: HNHBCI

Temperature 298 \pm 1K μ^0 =0.1(M) KNO₃, water-dioxane (v/v) = 3:2

Vol. of alkali added in mL	\mathbf{H}^{+}	H+ + L	H ⁺ + L + Co(II)	H ⁺ + L + Ni(II)	H+ + L + Cu(II)	H ⁺ + L + Zn(II)
0.0	5.4	5.4	5.5	5.52	5.6	5.6
0.1	5.4	5.8	5.66	5.6	5.56	5.8
0.2	5.6	5.76	5.85	5.86	5.62	5.8
0.3	5.8	5.86	5.92	5.98	5.76	5.92
0.4	5.9	6.34	6.45	6.56	6.38	6.3
0.5	6.2	6.42	6.57	6.74	6.4	6.48
0.6	6.4	6.76	6.85	6.86	6.66	6.78
0.7	6.6	7.34	7.41	7.36	7.28	7.3
0.8	7.7	7.92	7.93	7.86	7.76	7.34
0.9	11.4	8.64	8.63	8.8	8.06	8.82
1.0	12.16	12.28	10.35	10.3	9.74	10.46
1.1	12.48	12.64	11.44	11.56	10.52	11.76
1.2	12.76	12.86	11.8	11.65	10.75	11.96

Calculation Of \overline{n}_A , \overline{n} AND P^L

The n_A , n & P^L were calculated using standard expressions

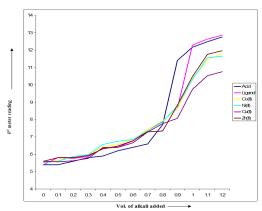
$$\frac{-}{n_A} = 1 + [(V_1 - V_2) / (V^O + V_1)] (N^O + E^O) / T_L^O$$

$$\frac{-}{n_A} = [(V_3 - V_2) / (V^O + V_1)] [(N^O + E^O) / T_M^O] \times 1/2$$

$$n_A$$

$$P^{L} = \log \left[\sum_{j=0}^{j} \beta_j^0 H (1/\text{antilogB}) (V^O + V_3) / (T_L^O - n^T T_M^O) V^O \right]$$

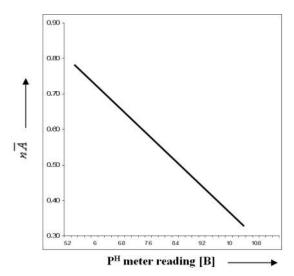
Proton - Ligand Stability Constant.


The ligand titration curve separates from acid titration curve at pH 5.16 at temperature 298 K. The ligand titration curves run parallel to the acid titration curves indicating the smooth

dissociation of ligand. The value of n_A at various pH reading [B] were calculated from the acid and ligand titration curves (**table no. 3**) at temperature 298 K. The formation curves obtained from the plot of n_A vs [B] (**graph 2**) at temperature 298 K, show that values of n_A lies between 0.3324 and 0.7920. This indicates that ligand is monoprotic.

Dissociation of ligand may be given as,

$$LH \longrightarrow H^+ L^-$$


The value of proton ligand stability constant was calculated by half – integral method and it was further corroborated by linear plot method (log $n_A/(1-n_A)$ vs [B](graph 3) at temperature 298 K.

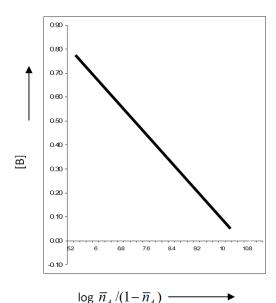

Graph No. 1 Experimental Curve with ligand – HNHBCI μ^0 =0.1 M KNO₃ Temp: 298 \pm 1K Water: Dioxane 3:2 (v/v)

Table No 3 Ligand: HNHBCI Temperature 298 \pm 1K μ^0 =0.1(M) KNO₃, Water–Dioxane medium (V/V) = 3:2

μ -0.1(1	μ =0.1(W) KNO3, water=Dioxane medium (\sqrt{V}) = 3.2						
В	V_2-V_1	$\stackrel{-}{n}_A$	$\log n_A / (1 - n_A)$				
5.2	0.032	0.7920	0.8157				
5.4	0.028	0.7870	0.7986				
5.6	0.032	0.7792	0.7645				
5.8	0.034	0.7720	0.7332				
6.0	0.036	0.7632	0.7224				
6.2	0.034	0.7560	0.6725				
6.4	0.042	0.7434	0.6730				
6.6	0.040	0.7352	0.6056				
6.8	0.046	0.7240	0.5680				
7.0	0.046	0.7120	0.5340				
7.2	0.052	0.6990	0.5026				
7.4	0.056	0.6880	0.4690				
7.6	0.058	0.6760	0.4342				
7.8	0.056	0.6642	0.4090				
8.0	0.060	0.6474	0.3722				
8.2	0.064	0.6362	0.3442				
8.4	0.702	0.6192	0.3092				
8.6	0.076	0.6026	0.2736				
8.8	0.082	0.5914	0.2506				
9.0	0.080	0.579	0.2264				
9.2	0.086	0.5674	0.2030				
9.4	0.082	0.5642	0.1950				
9.6	0.084	0.5554	0.1790				
9.8	0.084	0.5562	0.1790				
10.0	0.086	0.5394	0.1492				
10.2	0.096	0.519	0.1130				
10.4	0.012	0.4962	0.0682				
10.6	0.106	0.467	0.0178				
10.8	0.114	0.4298	0.0380				
11.0	0.126	0.3728	-0.0540				
11.2	0.132	0.3442	-0.0736				
11.4	0.136	0.3324	-0.0838				

Graph No. 2 Formation Curve of ligand HNHBCI Plot of n_A Vs [B] Temp: 298 ± 1 K μ^0 = 0.1 M KNO₃ Water: Dioxane 3:2 (v/v)

Graph No. 3 Formation Curve of ligand HNHBCI Plot of log n_A / (1 - n_A) Vs [B] Temp: 298 \pm 1K μ^0 = 0.1 M KNO₃ Water:Dioxane 3:2 (v/v)

Co(II) -HNHBCI System

Complex titration curves separated from ligand mixture curve at

pH = 6.23 the curves diverge at pH above 9.58.

The value of n lies between 0.2172 and 1.6806 (table no. 4 graph no.4a) at temperature 298 K. indicating the formation of ML and ML₂ types of complexes.

From the formation curves (**graph 4a**) the values of $\log K_1$ and $\log K_2$ were calculated by half – integral method¹³ at given temperature. The values were further corroborated by mid point slope method¹⁴ and linear plot of $\log n/(1-n)$ vs P^L (table no. 5 graph no. 5a) and plot of $\log (2-n)/(n-2)$ vs P^L .(table no. 5, graph 6a) at temperature 298K.

Ni (II) - HNHBCI System

The complex titration curves crossed the ligand titration curve at pH = 5.38 indicating the start of complexation. The curve increases regularly upto pH = 7.62 indicating quick but incomplete dissociation of ligand.

No turbidity appears; hence hydrolysis does not take place. values of \overline{n} falls between 0.07 and 1.89 (**graph 4b**; **table no. 6**) at temperature 298 K indicating the formation of ML and ML₂ type of complexes.

From the formation curves, **graph 4b**, the values of log K_1 and log K_2 were calculated by half integral method at given temperature and verified by mid – point slope method and linear plot of log $(\overline{n}/1-\overline{n})$ vs P^L (Table no. 7, graph no. 5b) and plot of log $((2-\overline{n})/(\overline{n}-1))$ vs P^L (Table 7, graph no. 6b).

Cu(II) -HNHBCI System

The complex, titration curve separated from ligand mixture curve at pH 6.30 indicating the start of complex formation.

As the metal titration curves did not join up and run parallel to the ligand titration curves indicating liberation of extra proton due to hydrolysis which was observed at pH = 8.46. Hence, in order to preclude error due to hydrolysis in the calculation of \overline{n} , only the lower pH region of titration curves were used.

The values of n lies between 0.04 to 1.90 (**graph – 4c, table no. 8**) at temperature 298 K indicating the formation of ML and ML₂ type of complexes.

From the formation curves (**graph** – **4c**, **table no. 8**) of n vs P^L , the value of log K_1 and log K_2 at the given temperature were calculated by half – integral method. It was verified by the mid point slope method and straight line plot method and linear plot of log ($\overline{n}/1-\overline{n}$) vs P^L (**Table no. 9**; **graph no.** – **5c**) and also plot of log ($(2-\overline{n})/(\overline{n}-1)$) vs P^L (**table no. 9**, **graph no. 6c**).

Zn(II) - HNHBCI SYSTEM

The complex curves separated from ligand titration curves at pH = 5.74 and diverges at pH above 7.58

During the titration no turbidity appears, hence hydrolysis does not take place.

The values of n lies between 0.056 to 1.68 (**table – 10**, **graph 4d**) at temperature 298 K indicating the formation of ML and ML₂ type of complexes.

From the formation curve (**graph** -4**d**) at 298 K values of log K_1 and log K_2 were calculated by half – integral method. It was further verified by mid-point slope method and linear plot of $\log \frac{n}{(1-n)}$ vs P^L (**graph no. 5d, table no. 11**) and plot of $\log \frac{(2-n)}{(n-1)}$ vs P^L (**graph – 6d, table – 11**) at temperature 298 K.

Table No. 4 Co(II) HNHBCI Temp: 298 ± 1 K μ^0 =0.1 M KNO₃ Water:Dioxane 3:2 (v/v)

В	$V_3 - V_2$	$\frac{-}{n}$	P^{L}
6.0	0.006	0.2172	8.3160
6.2	0.008	0.2896	8.1222
6.4	0.010	0.3644	7.9264
6.6	0.014	0.4644	7.7694
6.8	0.014	0.5938	7.5516
7.0	0.020	0.6256	7.3640
7.2	0.024	0.6622	7.1774
7.4	0.030	0.8284	6.9950
7.6	0.036	1.2042	6.8144
7.8	0.048	1.2126	6.6386
8.0	0.050	1.4282	6.4642
8.2	0.066	1.6806	6.2730

Table No. 5 Co (II) HNHBCI Temp: 298 \pm 1 K μ^0 =0.1 M KNO₃ Water: Dioxane 3:2 (v/v)

$\frac{-}{\log n}/(1-\overline{n})$	\mathbf{P}^{L}	$\log(2-n)/(n-1)$	\mathbf{P}^{L}
-0.9764	8.3160	0.8350	6.8140
-0.7300	8.1226	0.4430	6.6386
-0.5402	7.9290	-0.0584	6.4646
-0.3410	7.7384	-0.6506	6.2730
0.3230	7.3640		
0.5714	7.1764		

Table No. –6 Ni (II) + HNHBCI Temp : 298 \pm 1 K $\,\mu^0$ =0.1 M KNO₃ Water:Dioxane 3:2 (v/v)

		,	<i>′</i>
[B]	$V_3 - V_2$	n –	P^L
5.2	0.006	0.0774	9.1114
5.4	0.008	0.2364	8.9180
5.6	0.016	0.3396	8.7262
5.8	0.016	0.4240	8.5350
6.0	0.018	0.5456	8.3460
6.2	0.020	0.6690	8.1580
6.4	0.024	0.7962	7.9712
6.6	0.030	0.9504	7.7870
6.8	0.036	1.0212	7.6042
7.0	0.042	1.2012	7.4254
7.2	0.050	1.3972	7.2486
7.4	0.062	1.6254	7.0770
7.6	0.064	1.8920	6.9132

Table No. 7 Ni (II) + HNHBCI Temp: 298 \pm 1 K μ^0 =0.1 M KNO₃ Water: Dioxane 3:2 (v/v)

$\log \frac{n}{n}/(1-n)$	\mathbf{P}^{L}	$\frac{-\log(2-n)}{n}/(n-1)$	P^L
-0.7004	8.9174	0.5974	6.4256
-0.6258	8.7264	0.1796	6.2486
-0.4182	8.5350	-0.2234	6.0772
-0.0846	8.3466		
0.2214	8.1586		
0.4606	7.9710		
0.8550	7.7872		

Table No. – 8 Cu(II) + HNHBCI Temp: 298 \pm 1 K μ^0 =0.1 M KNO₃ Water:Dioxane 3:2(v/v)

[B]	V_3-V_2	\overline{n}	P^{L}
5.2	0.004	0.0450	9.3096
5.4	0.006	0.1132	9.1154
5.6	0.010	0.1820	8.9220
5.8	0.014	0.2752	8.7304
6.0	0.018	0.3940	8.5416
6.2	0.020	0.5162	8.3530
6.4	0.022	0.6644	8.1680
6.6	0.032	0.8160	7.9832
6.8	0.040	0.9966	7.8026
7.0	0.042	1.1834	7.6234
7.2	0.052	1.4022	7.4776
7.4	0.066	1.6260	7.2772
7.6	0.074	1.9092	7.1158

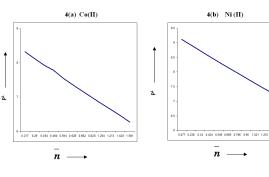
Table No. – 9 Cu(II) + HNHBCI Temp: 298 \pm 1 K μ^0 =0.1 M KNO₃ Water:Dioxane 3:2(v/v)

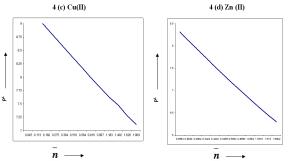
$\frac{1}{\log n}/(1-n)$	\mathbf{P}^{L}	$\log(2-n)/(n-1)$	\mathbf{P}^{L}
-0.9940	9.1152	0.7472	7.6230
-0.7526	8.9222	0.2726	7.4490
-0.2860	8.5410	-0.3240	7.2772
0.3966	8.1682		
0.5486	7.9830		

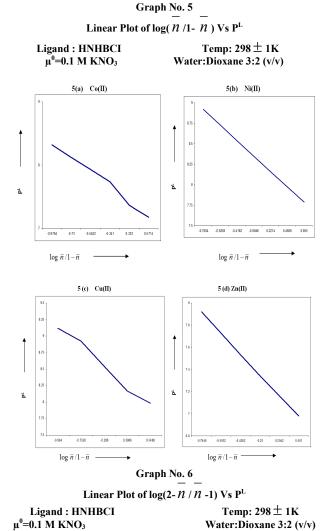
Table No. 10 Zn(II) + HNHBCI Temp: 298 \pm 1 K μ^0 =0.1 M KNO₃ Water: Dioxane 3:2(v/v)

[B]	$\mathbf{V_3} - \mathbf{V_2}$	\overline{n}	\mathbf{P}^{L}
6.0	0.004	0.0564	8.3102
6.2	0.006	0.0852	8.1140
6.4	0.008	0.2682	7.9204
6.6	0.012	0.3424	7.7274
6.8	0.014	0.4204	7.5346
7.0	0.016	0.3256	7.3448
7.2	0.020	0.5094	7.1624
7.4	0.032	0.8992	6.9822
7.6	0.036	1.0352	6.8054
7.8	0.040	1.3516	6.6292
8.0	0.052	1.5730	6.4582
8.2	0.064	1.6802	6.2980

Table No. – **11** Zn(II) + HNHBCI Temp: 298 \pm 1 K μ^0 =0.1 M KNO₃ Water:Dioxane 3:2(v/v)


$\frac{-\operatorname{Log}_{-n}}{n/(1-n)}$	P^{L}	$\frac{\log (2-n)}{n}/(n-1)$	\mathbf{P}^{L}
-0.7946	7.9206	0.6214	6.6292
-0.5932	7.7278	0.0356	6.4582
-0.4262	7.5346	-0.4498	6.2984
-0.2300	7.3442		
0.2942	7.1628		
0.5010	6.9822		


Graph No. 4 Formation Curve


Plot of \mathcal{H} Vs $[P^L]$

Ligand : HNHBCI μ⁰=0.1 M KNO₃

Temp: 298 ± 1K Water:Dioxane 3:2 (v/v)

6 (a) Co(II)

6 (b) Ni(II)

6 (c) Cu(II)

6 (d) Zn(II)

6 (d) Zn(II)

6 (d) Zn(II)

The most representative values of $\log K_1$ and $\log K_2$ obtained are given in table -12.

Table No. – **12** log of stepwise and overall stability constants of complex compounds of various metals with ligand HNHBCI at 298.

 $\mu^0 = 0.10$ (M) KNO₃ Water – dioxane medium (V/V) = 3:2

	Ligand (HNHBCI)			
System	log K ₁	log K ₂	\logeta	
	11.10	-	11.10	
Co (II)	7.31	6.31	13.62	
Ni (II)	7.22	6.14	13.36	
Cu (II)	6.49	5.42	11.91	
Zn(II)	6.24	5.42	11.66	

DISCUSSION

The values of stepwise stability constants and over all stability constants are given in table no. 12. For the given ligand the stability constants of complexes for different metals show the sequence

This is natural order given by Irving – William¹⁵. A theoretical justification of the order of stability constants follows from the consideration of the reciprocal of the ionic radii and 2nd ionization enthalpy of metal. Calvin – Bjerrum titration technique modified by Irving and Rossotti was used to determine the practical proton ligand and metal ligand stability constants at constant ionic strength maintained by using dilute KNO₃ solution. Irving and Rossotti pointed out that the formation constant of metal chelates can be obtained without converting the pH – meter reading [B] to stoichiometric hydrogen ion concentration and without knowing the stiochiometric concentration of neutral salts added to maintain ionic strength. This method is valid for both aqueous and non-aqueous medium.

The nitrate (NO_3^-) ion has very slight complexing tendency. Therefore, competition between nitrate ion and the ligand under study is of no importance¹⁶.

The stability of the chelates is greatly affected by the electron density around the imino nitrogen $(-C = N -)^{17}$. Higher the electron density around the nitrogen atom, stronger is the metal ligand bond.

The difference between the successive stepwise stability constant is large, which suggest that the formation of ML and ML $_2$ chelates take place. The results obtained are in conformity of our previous studies ¹⁸⁻²⁶ and other workers ²¹⁻²²

References

- . Irving H.M., Rossotti H.S., J. Chem Soc., 2904, 1954.
- 2. Bjerrum, J.: Metal amine formation in aqueous solution. P. Hasse and Sons. Copenhagen 1941.
- 3. Liu C. M.; Xiong R.G.; You X. Z.; Liu Y.J.; Cheung K.K., Polyhedron, 15 1996, 45651.
- 4. Djebbar S.S.; Benali B.O.; Deloume J.P., Transit Metal Chem., 23, 1998,443.
- 5. Hamada Y.J., IEEE Trans. Electron Devices, 44, 1997, 1208.
- 6. Srivastava R.S., Ind. J. Chem., 29, 1990, 1024 1026.
- 7. Waish C., Nature, 409, 2001, 226.
- 8. He L.; Gou S. H.; Shi Q.F., J. Chem. Crystallogr., 29, 1999, 207.

- 9. Wu J.C.; Tang N.: Liu W.S.; Tan M.Y.; Chan A.S., Chin Chem. Lett., 12, 2001, 757.
- 10. Pandey V. K.; Sarah, T and Zehra T: *Indian J. Chem.* 43 B, 2004, 180
- 11. Joshi, L.D.; Kumar, R. and Parmar, S.S., Curr.Sci. 42,1973,847
- 12. Otto, H. and Houlohan, W.W.; Swiss Pat 1971, 499, 540, Chem Abstr. 75, 1771,20435
- 13. Djebbar S. S.; Benali B.O.; Deloume J.P. Polyhedron, 16, 1997, 2175.
- 14. Irving, H. and Rossotti, H. J. J. Chem. Soc. 3397 (1953)
- 15. Bhattacharrya P.; Parr J.; Ross A. T., Chem. Soc. Dalton, 1998, 3149.
- 16. Brown D. H., Smith W.E., Teape J.W. et al., J. Med. Chem., 23(7), 1980,729.
- 17. Mukherjee, S. K. and Rawat N.S., *J. Ind. Chem.* Soc. 58,614,1981

- 18. P. M. Mishra et al: *Asian Journal of Chemistry* vol. 21(7) p 5055 5060 (2009).
- 19. P. M. Mishra et al: Asian Journal of Chemistry vol. 21(9) p -7195 7199(2009).
- 20. P. M. Mishra et al: *Journal of Ultra Chemistry* vol. 5(2) p 131-136 (2009).
- 21. P. M. Mishra et al: *Journal of Ultra Chemistry* vol. 9(1) p 149 155 (2013).
- 22. P. M. Mishra et al: *Rasayan Journal of Chemistry* vol. 4(2) p 303-319 (2011).
- 23. T. Suresh et. al : *J. Ind. Council of Chem.* Vol. 24(1) pp 123 (2007)
- 24. T. Suresh et. al : *J. Ind. Council of Chem.* Vol. 25(2) pp 68-70 (2008)
- 25. P. M. Mishra, Bimlesh Kumar Yadav : Ultra Scientist Vol. 27(3) B, p 139-154 (2015)
- 26. P. M. Mishra: *Journal of Applicable Chemistry* vol. 5 No.-5, p. 1163-74 (2016)
- 27. P. M. Mishra: Oriental Journal of Chemistry vol. 32 No.-5, (2016)
- 28. P. M. Mishra: *Journal of Ultra Chemistry* vol. 12 No.-2, p. 38-51 (2016)
