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1. Introduction

In this paper we establish inequalities for the moments of
bivariate ageing classes, namely, Bivariate Increasing Failure
Rate (BIFR), Bivariate New Better than Used in Expection
(BNBUE), Bivariate Harmonic New Better than Used in
Expectation (BHNBUE), Bivariate New Better than Used in
Failure Rate (BNBUFR), Bivariate New Better than Renewal
Used (BNBRU), Bivariate New Renewal better than Used
(BNRBU), Bivariate Renewal New is Better than Renewal
Used in Expectation (BRNBRUE), Bivariate New Better than
Used in Laplace transform order (BNBUL), Bivariate
Exponential Better than Used (BEBU), Bivariate Exponential
Better than Used in Convex order (BEBUC(2)), Bivariate
Exponential Better than Used in Convex Average (BEBUCA),
Certain class of life distributions and their variations have
been introduced. The application of these bivariate classes of
life distributions can be seen in engineering, social and
biological sciences. Reliability analysis have shown a growing
interest in modeling, survival data using classification of life
distributions based on some aspects of aging.

2. Preliminaries

In this section, we give below the definition of various
bivariate stochastic ageing classes that are required for further
discussion.
Definition 2.1 A bivariate random variable ),( YX or its

distribution ),( yxF is said to have  Bivariate Increasing

Failure Rate (BIFR) if
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Definition 2.4 A bivariate random variable ),( YX or its

distribution ),( yxF having failure rate ),( yxr is said to

have  Bivariate New Better than Used in Failure Rate
(BNBUFR) if

0.,),((0,0)  yxforyxrr
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distribution ),( yxF is said to have  Bivariate New Better
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then the above inequality becomes

( , ) ( , ) ( , ), , , , 0W x t y s F x y W t s for all x y t s   

Definition 2.6 A bivariate random variable ),( YX or its
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distribution ),( yxF is said to have  Bivariate New Renewal
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Here  denotes the mean of the bivariate life distribution F
and is assumed to be finite.
Definition 2.8 A bivariate random variable ),( yx or its

distribution ),( yxF is said to have  Bivariate Renewal New

is Better than Renewal Used (BRNBRU) if

).,(),(),( stWyxWsytxW FFF 
For all 0,,, styx That is

 
 

( , ) ( , ) .

( , ) ,

x t y s x y

t s

F u v dvdu F u v dvdu

F u v dvdu


   

 

 

   

 
for all 0.,,, styx
Definition 2.9 A bivariate random variable ),( YX or its

distribution ),( yxF is said to have  Bivariate New Better

than Used in Laplace transform order (BNBUL) if

0 0
[ ( )] ( , )exp x y F x t y s dydx

 
    

0 0
( , ) [ ( )] ( , ) ,F t s exp x y F x y dydx

 
   

for all 0>, yx and 0 .

Definition 2.10 A bivariate random variable ),( YX or its

distribution ),( yxF is said to haveBivariate Renewal New

is Better than Renewal Used in Expectation (BRNBRUE) if

.),(),(2 (2) dsdtstFdsdtstF
yxvuyx 


 

Definition 2.11 A bivariate random variable ),( YX or its

distribution ),( yxF is said to have Bivariate Exponential

Better than (BEBU) if

0.,,,).,(),(
)(




sytxallforestFsytxF
yx



Definition 2.12 A bivariate random variable ),( YX or its

distribution ),( yxF is said to have  Bivariate Exponential

Better than Used in Convex order Two (BEBUC(2)) if

( , )

( , ) ,

u v

u v

F x t y s dsdt

x y
exp F t s dsdt



 

 

 

  
   

  

 

 
for all 0.,,, vuyx
Definition 2.13 A bivariate random variable ),( YX or its

distribution ),( yxF is said to have  Bivariate Exponential

Better than Used Convex order Average (BEBUCA) if

),(),( 2

00
stFdvdudxdyvuF

txsy












Put

dvduvuFsytxW
txsy

),(=),( 









then the above inequality becomes

0.,),,(),( 2

00



stallforstFdxdysytxW 

Definition 2.14 A bivariate random variable ),( YX or its

distribution ),( yxF is said to have  Bivariate Overall

Decreasing Life class (BODL) if

),,(),( stWdxdyyxW
ts




where

dvduvuFstW
ts

),(
1

=),( 



and

dvduvuF ),(=
00 



is assumed to be finite.
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3. Moment Inequality

In this section we established some theorems on
Moment Inequality. We now present a theorem which is
useful for further discussion
Theorem 3.1 If (i) F is BIFR with mean  and
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Proof. Suppose  is increasing and F is not identically

equal to .G
Since F is BIFR and G is bivariate exponential distribution
with common mean  .

F crosses G exactly once from the above,Say at ),( 00 st .

That is ,
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This completes the proof of the theorem.
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This completes the proof of the theorem.
Theorem 3.4 If F is BHNBUE then for all integers 0r
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This completes the proof of the theorem.

Theorem 3.5 Let F be BNBUFR such that for some integers
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This completes the proof of the theorem.
Theorem 3.6 Suppose that F is BNBRU life distribution and
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This completes the proof of the theorem.
Theorem 3.7 For all non-negative integer 0r and F is
BNRBU we get
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where I is a indicator function.
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Using (3.10) and (3.11) the inequality (3.9) become
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This completes the proof of the theorem.
Theorem 3.9 If F is BRNBRU then
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Proof. Let
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Using (3.13),(3.14) and (3.15) in (3.12) we get
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This completes the proof of the theorem.

Theorem 3.10 If F is BRNBRUE then
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Proof. If F is a BRNBRUE, we have
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Using (3.17) and (3.18) the inequality (3.16) becomes
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This completes the proof of the theorem.

Theorem 3.11 Let )(=)( )(

00
yxdFe yx 

 

if F is BNBUL. Then for all integer 0, rs

 
1

1

1
= 0

( 1)

( 1) !
1 ( )

! ( 1) ( 1)

( )! ( 1)

(1 ( ))
= .

( 1)

m

m

m i
m i

m
i

m

m

m m i

m i m i

m

 







  












 

  
  






Proof. Let

).,(=)( )(

00
yxdFe yx

 

Since F is BNBUL we have

( )

0 0

( )

0 0

( , )

( , ) ( , )

x y

x y

e F x t y s dxdy

F t s e F x y dydx





   

   

 



 
 

Multiplying both side by mts)( and integrating over )(0, ,

we obtain,

( )

0 0 0 0
( ) ( , )m x yts e F x t y s dydxdsdt          

dydxyxFedsdtstFts yxm ),(),()( )(

0000



 

(3.19)
Consider

0 0 0 0
( ) ( , ) = ( ) ( > , > )m mts F t s dsdt E ts I T t S s dsdt

    
     

1)(

1)(
=




m

m
(3.20)

( ) ( )

0 0 0 0
( , ) = (1 ( , ))x y x ye F x y dydx e F x y dydx 

   
       

dydxyxFe yx ),(
1

= )(

00



 



)(
11

= 



))((1
1

= 

 (3.21)

Using (3.20) and (3.21) in the equation (3.19) we have
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Using (3.22) and (3.25) then the inequality (3.19) becomes
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This completes the proof of the theorem.
Theorem 3.12 Let F be a life distribution which is BEBU
with mean  then
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Using (3.27) and (3.28) in (3.26) we get,
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This completes the proof of the theorem.

Theorem 3.13 Suppose that F is BEBUC(2) life distribution

such that its 4sr the moment of order is finite 4)(  sr
for some integers r and s then the following moment
inequality holds
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Proof. Since F is BEBUC
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Using (3.31) and (3.32) in (3.30) we have
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This completes the proof of the theorem.

Theorem 3.14 If F is BEBUCA then
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Proof. Since F is BEBUCA we have
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Using (3.34) and (3.35) in (3.33) we get
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This completes the proof of the theorem.

Conclusion

In this paper, we have derived the moment inequalities for
bivariate ageing classes of life distributions.
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