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In this paper, the authors introduced and investigate the generalized Ulam  Hyers stability of a n dimensional additive-quadratic

functional equation
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where id is positive integer with 0id in anti-intuitionistic fuzzy normed spaces using Hyers method.
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1.  Introduction

Stability problem of a functional equation was first posed by
S.M. Ulam [45] which was answered by D.H. Hyers [23] and
then generalized by T. Aoki [2], Th.M. Rassias [37], J.M.
Rassias [34] for additive mappings and linear mappings,
respectively. Further generalizations on the above stability
results was given in [15, 20, 21, 39]. Since then several
stability problems for various functional equations have been
investigated in [1, 3, 4, 6, 7, 8, 9, 10, 11, 16, 24, 32, 35, 38,
46]; various fuzzy stability results concerning Cauchy, Jensen,
quadratic and cubic functional equations were discussed in
[18, 19, 27, 28, 29, 30, 42, 43, 44].

The solution and stability of following Mixed type additive
quadratic functional equations
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were investigated by M. Arunkumar, P. Agilan [6, 7, 8, 9, 10,
11, 12, 13, 36].

In this paper, the authors introduced and investigate the
generalized Ulam  Hyers stability of a n dimensional
additive-quadratic functional equation
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where id is positive integer with 0id in Anti-intuitionistic

fuzzy normed spaces using Hyers method.

In Section 2, basic definition and preliminaries of Anti-
intuitionistic fuzzy normed space is present, In Section 3, the
generalized Ulam - Hyers stability of the functional equation
(5) is proved via Hyers method.

2. Preliminaries of Anti-Intuitionistic Fuzzy
Normed Spaces

In this section, some preliminaries about Anti-intuitionistic
fuzzy normed space. For definations and notations about
intuitionistic fuzzy normed space one can refer [17, 14, 42].

Definition 2.1 [42] Let  and  be membership and

nonmembership degree of an anti-intuitionistic fuzzy set from

  0,X to  0,1 such that     1 tt xx  for all

Xx and all 0>t . The triple  TPX ,, , is said to be

an Anti-intuitionistic fuzzy normed space (briefly AIFN-

space) if X is a vector space, T is a continuous

t representable and  ,P is a mapping    LX 0,

satisfying the following conditions: for all Xyx , and
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In this case,  ,P is called an Anti-intuitionistic

fuzzy norm. Here,       .,=,, tttxP xx 

3. Stability Results: Direct Method
In this section, the authors present the generalized Ulam-Hyers
stability of the Additive-quadratic functional equation (5) in
Anti-intuitionistic fuzzy normed spaces. Now we use the
following notation for a given mapping YXDf : such

that
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holds for all Xx and all 0>r . Replacing r by ra b in

(10), we get
1

, 1

,
2 1

( ) ( )
,
2

' 0, ,0 , ,0 ,

b b b
o o

b b b

L
n times

h T x h T x a r
P

T T T T

P x r

 

 








 
  

  
      




(11)

for all Xx and all 0>r . It is easy to see that

i

i
o

i

i
o

b

i
ob

b
o

T

xTh

T

xTh
xh

T

xTh )()(
=)(

)(
1

11

0=

 



 (12)

for all Xx . From equations (11) and (12), we have
1

,
=0

11 1
1

=0 , 1
=0 =0

1
=0 ,

2 1

,
2

( )
( ),

2

( ) ( )
' ,

2

' 0, ,0, ,0 ,

' 0, ,0

b ib
o

ob b
i

i i ib b
b o o

i i i bL i i

b
iL

n times

L
n

h T x a r
P h x

T T T

h T x h T x a r
T P

T T T T

T P x r

P

 

 

 

 



 


 








 
  

  
      

             

 



 





1

, ,0 ,
times

x r


  
     



(13)

for all Xx and all 0>r . Replacing x by xT c in (??)

and using (1), 3)(IFN , we obtain

1

,
= 0

,
2 1

( ) ( )
,

2

' 0, , 0 , , 0 ,

b c c ib
o o

b c c i c
i

cL
n tim es

h T x h T x a r
P

T T T T

r
P x

a

 

 

 

 




 
  

  
      






(14)

for all Xx and all 0>r and all 0, cb . Replacing r

by ra c in (14), we get
1

,
=0

,
2 1

( ) ( )
,

2

' 0, , 0 , , 0 ,

b c c ib c
o o

b c c i
i

L
n times

h T x h T x a r
P

T T T T

P x r

 

 

  






 
  

  
      






(15)

for all Xx and all 0>r and all 0, cb . It follows

from (15), that

,

, 1
2 1

=0

( ) ( )
,

' 0, ,0, ,0 ,

2

b c c
o o

b c c

ib cL
n times

i
i

h T x h T x
P r

T T

T
P x

a

T T

 

 





  


 
 

 
 
  
   
    





(16)

holds for all Xx and all 0>r and all 0, cb . Since

Ta <<0 and 





 <

0=

ib

i T

a
. Thus









b

b
o

T

xTh )(
is a

Cauchy sequence in  TPY ,, , . Since  TPY ,, , is a

complete IFN-space this sequence convergent to some point

  YvA  . So, one can define the mapping YXA : by

,

( )
( ) , 1 ,      ,   > 0

b
o

Lb

h T x
P A x r as b r

T 
 

   
 

(17)

for all .Xx Letting 0=c in (16), we get

,

, 1
2 1

=0

( )
( ),

' 0, ,0, ,0 ,

2

b
o

ob

ibL
n times

i
i

h T x
P h x r

T

T
P x

a

T T

 

  


 
 

 
 
  
   
    





(18)

for all Xx and all 0>r . Now for every 0> and

from (18), we have

 

 

   

   

,

,

,

,

, 1
2 1

=0

( ) ( ),

' ( ) , ,

' ,

' , ,

' 0, ,0, ,0 ,

2

o

b
o

b

L b
o

o b

o

b

L

ib
n times

i
i

P A x h x r

h T x
P A x

T
T

h T x
P h x r

T

h Tx
P A x

T

T
r

P x
a

T T

 

 

 

 

 














 

  
  

    
  

  
    
  

  
  
                







(19)

for all Xx and all 0>r . Taking the limit as b in

(19), we get
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for all Xx and all 0>r , hence )(=)( xAxA  .

Therefore )(xA is unique.

For 1=  , we can prove the similar stability

result. This completes the proof of the theorem.
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a mapping such that for some d with 0 < < 1
a
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a
satisfying (1),(2),(27) and (28). Suppose that

a function YXh : satisfies the inequality
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for all Xxxxx nn 12210 ,,,  and all 0>r . Then there

exists a unique additive mapping YXA : and unique

quadratic mapping YXQ : satisfying (5) and
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for all Xx and all 0>r .

Proof. Let
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for all Xx . Then

0=(0)ah and )(=)( xhxh aa  for all Xx . Hence
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(37)

for all Xxxxx nn 12210 ,,,  and all 0>r . By Theorem

3.1 there exists a unique additive mapping YXA : such

that
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for all Xx and all 0>r , where
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for all Xxxxx nn 12210 ,,,  and all 0>r .

Also, let
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for all Xx .

Then 0=(0)qh and )(=)( xhxh qq  for all Xx .
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(40)

for all Xxxxx nn 12210 ,,,  and all 0>r . By Theorem

3.3, there exists a unique quadratic mapping YXQ :
such that
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for all Xx and all 0>r , where
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for all Xxxxx nn 12210 ,,,  and all 0>r . Define

)()(=)( xhxhxh qa  (43)

for all Xx . From (35),(38) and (39), we arrive
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for all Xx and all 0>r . Hence the theorem is proved.

The following corollary is the immediate
consequence of corollaries 3.2, 3.4 and Theorem 3.5
concerning the stability for the functional equation (5).

Corollary 3.6 Suppose that a function YXh : satisfies

the inequality
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for all Xxxxx nn 12210 ,,,  and all 0>r , where s,

are constants with 0> . Then there exists a unique additive

mapping YXA : and a unique quadratic mapping

YXQ : such that

 
 
 
 
 
 
 

,

0

,

2 0

,

,

2

,

(2 1) (2 1)

,

(2 1) 2 (2 1)

,

( ) ( ) ( ),

{ ' ,2 | | ,

' , 2 | | }

{ ' || || , 2 | | ,

' || || , 2 | | }, 1,2;

{ ' || || , 2 | | ,

1 2
' || || , 2 | | }, , ;

2 1 2 1

s s

s s

L

n s n s

n s n s

P h x A x Q x r

T P T T r

P T T r

T P x T T r

P x T T r s

T P x T T r

P x T T r s
n n

 

 

 

 

 

 

 











 

 

 

 



   


 
 












(46)

for all Xx and all 0>r .
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