International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: SJIF: 6.614 Available Online at www.journalijcar.org Volume: 7| Issue: 1| Special Issue January: 2018 | Page No.39-47 DOI: http://dx.doi.org/10.24327/IJCAR

GENERALISED ULAM-HYERS STABILITY OF A *n*- DIMENSIONAL ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN ANTI-INTUITIONISTIC FUZZY NORMED SPACES

M. Arunkumar¹ and P.Agilan²

¹ Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, Tamil Nadu.

² Department of Mathematics, Jeppiaar Institute of Technology, Sriperumbudur, Chennai - 631 604, Tamil Nadu.

ABSTRACT

RESEARCH ARTICLE

In this paper, the authors introduced and investigate the generalized Ulam - Hyers stability of a n- dimensional additive-quadratic functional equation

 $\sum_{k=0}^{n} \left[\sum_{l=1}^{2} h \left(\frac{d_{2k} x_{2k} + (-1)^{l} d_{2k+1} x_{2k+1}}{2} \right) \right]$ $= \sum_{k=0}^{n} \left[\sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k}) \right] \right] + \left(\frac{d_{2k+1}}{2} \right)^{2} \left[h(x_{2k+1}) + h(-x_{2k+1}) \right] \right]$

where d_i is positive integer with $d_i \neq 0$ in anti-intuitionistic fuzzy normed spaces using Hyers method.

Copyright©2018 *M. Arunkumar and P.Agilan*. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Stability problem of a functional equation was first posed by S.M. Ulam [45] which was answered by D.H. Hyers [23] and then generalized by T. Aoki [2], Th.M. Rassias [37], J.M. Rassias [34] for additive mappings and linear mappings, respectively. Further generalizations on the above stability results was given in [15, 20, 21, 39]. Since then several stability problems for various functional equations have been investigated in [1, 3, 4, 6, 7, 8, 9, 10, 11, 16, 24, 32, 35, 38, 46]; various fuzzy stability results concerning Cauchy, Jensen, quadratic and cubic functional equations were discussed in [18, 19, 27, 28, 29, 30, 42, 43, 44].

The solution and stability of following Mixed type additive quadratic functional equations

$$f(x+2y+3z) + f(x-2y+3z) + f(x+2y-3z) + f(x-2y-3z) + f(x-2y-3z)$$

= 4 f(x) + 8 [f(y) + f(-y)] +8 [f(z) + f(-z)] (1)

$$f(3x + 2y + z) + f(3x - 2y + z) + f(3x + 2y - z) + f(3x - 2y - z) = 12 f(x) + 12 [f(x) + f(-x)] (2) + 8 [f(y) + f(-y)] + 2 [f(z) + f(-z)] f(l^{-1}u + m^{-1}v + n^{-1}w) + f(l^{-1}u - m^{-1}v + n^{-1}w) + f(l^{-1}u + m^{-1}v - n^{-1}w) + f(l^{-1}u - m^{-1}v - n^{-1}w) = 4f(l^{-1}u) + 2 [f(m^{-1}v) + f(-m^{-1}v)] (3) + 2 [f(n^{-1}w) + f(-n^{-1}w)] f(\sum_{i=1}^{n} r_{i}x_{i}) = \sum_{i=1}^{n} \left(\sum_{j=1}^{2} \frac{r_{i}^{j}}{2} [f(x_{i}) + (-1)^{j}f(x_{i})]\right) + \sum_{1 \le i < j \le n} \frac{r_{i}r_{j}}{4} \left(\sum_{p=0}^{1} (-1)^{p+q} f[(-1)^{p}x_{i} + (-1)^{q}x_{j}]\right) \right) (4)$$

were investigated by M. Arunkumar, P. Agilan [6, 7, 8, 9, 10, 11, 12, 13, 36].

In this paper, the authors introduced and investigate the generalized Ulam – Hyers stability of a n – dimensional additive-quadratic functional equation

$$\sum_{k=0}^{n} \left[\sum_{l=1}^{2} h\left(\frac{d_{2k} x_{2k} + (-1)^{l} d_{2k+1} x_{2k+1}}{2} \right) \right]$$
$$= \sum_{k=0}^{n} \left[\sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k}) \right] \right] + \left(\frac{d_{2k+1}}{2} \right)^{2} \left[h(x_{2k+1}) + h(-x_{2k+1}) \right] \right]$$
(5)

where d_i is positive integer with $d_i \neq 0$ in Anti-intuitionistic fuzzy normed spaces using Hyers method.

In Section 2, basic definition and preliminaries of Antiintuitionistic fuzzy normed space is present, In Section 3, the generalized Ulam - Hyers stability of the functional equation (5) is proved via Hyers method.

2. Preliminaries of Anti-Intuitionistic Fuzzy Normed Spaces

In this section, some preliminaries about Anti-intuitionistic fuzzy normed space. For definations and notations about intuitionistic fuzzy normed space one can refer [17, 14, 42].

Definition 2.1 [42] Let ~ and \in be membership and nonmembership degree of an anti-intuitionistic fuzzy set from $X \times (0, +\infty)$ to [0,1] such that $\sim_x(t) + \in_x(t) \le 1$ for all $x \in X$ and all t > 0. The triple $(X, P_{-\xi}, T)$ is said to be an Anti-intuitionistic fuzzy normed space (briefly AIFNspace) if X is a vector space, T is a continuous t-representable and $P_{-\xi}$ is a mapping $X \times (0, +\infty) \rightarrow L^*$ satisfying the following conditions: for all $x, y \in X$ and t, s > 0,

$$(IFN1) P_{-\pounds}(x,0) = 0_{L^{*}};$$

$$(IFN2) P_{-\pounds}(x,t) = 1_{L^{*}} \text{ if and only if } x = 0;$$

$$(IFN3) P_{-\pounds}(rx,t) = P_{-\pounds}\left(x,\frac{t}{|r|}\right) \text{ for all } r \neq 0;$$

$$(IFN4) P_{-\pounds}(x+y,t+s) = P_{-\pounds}(x,t), P_{-\pounds}(y,s).$$

In this case, $P_{\sim,\in}$ is called an Anti-intuitionistic fuzzy norm. Here, $P_{\sim,\in}(x,t) = (\sim_x(t), \in_x(t))$.

3. Stability Results: Direct Method

In this section, the authors present the generalized Ulam-Hyers stability of the Additive-quadratic functional equation (5) in Anti-intuitionistic fuzzy normed spaces. Now we use the following notation for a given mapping $Df : X \to Y$ such that

$$Df(x_{0}, x_{1}, \dots, x_{2n}, x_{2n+1})$$

$$\sum_{k=0}^{n} \left[\sum_{l=1}^{2} h\left(\frac{d_{2k} x_{2k} + (-1)^{l} d_{2k+1} x_{2k+1}}{2} \right) \right]$$

$$-\sum_{k=0}^{n} \left[\sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k}) \right] \right]$$

$$+ \left(\frac{d_{2k+1}}{2} \right)^{2} \left[h(x_{2k+1}) + h(-x_{2k+1}) \right]$$

for all $x_0, x_1, \dots x_{2n}, x_{2n+1} \in X$.

Theorem 3.1 Let $U \in \{1, -1\}$. Let $\Lambda : X^n \to Z$ be a

function such that for some $0 < \left(\frac{a}{T}\right)^{u} < 1$,

$$P'_{\neg,\ell}\left(\Lambda\left(\underbrace{0,\cdots,0}_{2n-1\,\text{times}},T^{ub}x,0\right),r\right)$$
$$\leq_{L^{*}}P'_{\neg,\ell}\left(a^{ub}\Lambda\left(\underbrace{0,\cdots,0}_{2n-1\,\text{times}},x,0\right),r\right) \quad (1)$$

for all $x \in X$ and all r > 0 and

$$\lim_{b \to \infty} P'_{-, \epsilon} \left(\Lambda \begin{pmatrix} T^{ub} x_0, T^{ub} x_1, T^{ub} x_2, \\ \cdots, T^{ub} x_{2n}, T^{ub} x_{2n+1} \end{pmatrix}, T^{ub} r \right) = 1_{L^*}$$
(2)

for all $x_0, x_1, \dots, x_{2n}, x_{2n+1} \in X$ and all r > 0. Let

 $f_o: X \rightarrow Y$ be an odd function satisfies the inequality

$$P_{-,\varepsilon} \left(Dh_o(x_0, x_1, \cdots x_{2n}, x_{2n+1}), r \right) \\ \leq_{L^*} P'_{-,\varepsilon} \left(\Lambda \left(x_0, x_1, \cdots x_{2n}, x_{2n+1} \right), r \right)$$
(3)

for all $x_0, x_1, \cdots x_{2n}, x_{2n+1} \in X$ and all r > 0. Then the limit

$$P_{-,\varepsilon}\left(A(x) - \frac{h_o(T^b x)}{T^b}, r\right) \to \mathbf{1}_L^*, as \quad b \to \infty, \quad r > 0$$
 (4)

exists for all $x \in X$ and the mapping $A: X \to Y$ is a unique Additive mapping satisfying (5) and

$$P_{-,\varepsilon}\left(h_{o}\left(x\right)-A(x),r\right)$$

$$\leq_{L^{*}} P'_{-,\varepsilon}\left(\Lambda\left(\underbrace{0,\cdots,0}_{2n-1\,\text{times}},x,0\right),|\,2T-2a\,|\,r\right)^{(5)\text{ for all}}$$

$$x \in X \text{ and all } r > 0.$$

Proof. Let U = 1. Since f_o is an odd function, replacing

$$(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}) \text{ by } \left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right) \text{ in (3), we get}$$

$$P_{-, \ell} \left(2h_{o}\left(\frac{d_{2n}x}{2}\right) - d_{2n}h_{o}(x), r\right)$$

$$\leq_{L^{*}} P'_{-, \ell} \left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), r\right)$$
(6)

where $T = \frac{d_{2n}}{2}$ for all $x \in X$ and all r > 0. Using *(IFN 3)* in (6), we obtain

$$P_{-,\varepsilon}\left(\frac{h_{o}(Tx)}{T} - h_{o}(x), \frac{r}{2T}\right)$$

$$\leq_{L^{*}} P'_{-,\varepsilon}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), r\right)$$
(7)

for all $x \in X$ and all r > 0. Replacing x by $T^{b}x$ in (7), we have

$$P_{-\pounds}\left(\frac{h_{o}(T^{b+1}x)}{T} - h_{o}(T^{b}x), \frac{r}{2T}\right)$$

$$\leq_{L^{*}} P_{-\pounds}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, T^{b}x, 0\right), r\right)$$
(8)

for all $x \in X$ and all r > 0. Using (1), (*IFN* 3) in (8), we arrive

$$P_{-,\varepsilon}\left(\frac{h_{o}(T^{b+1}x)}{T} - h_{o}(T^{b}x), \frac{r}{2T}\right)$$

$$\leq_{L^{*}} P'_{-,\varepsilon}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), \frac{r}{a^{b}}\right)$$
(9)

for all $x \in X$ and all r > 0. It is easy to verify from (9), that

$$P_{-,\varepsilon}\left(\frac{h_o(T^{b+1}v)}{T^{b+1}} - \frac{h_o(T^bx)}{T^b}, \frac{r}{2T \cdot T^b}\right)$$

$$\leq_{L^*} P'_{-,\varepsilon}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), \frac{r}{a^b}\right)$$
(10)

holds for all $x \in X$ and all r > 0. Replacing r by $a^b r$ in (10), we get

$$P_{-,\ell}\left(\frac{h_o(T^{b+1}x)}{T^{b+1}} - \frac{h_o(T^bx)}{T^b}, \frac{a^b r}{2T \cdot T^b}\right)$$

$$\leq_{L^*} P'_{-,\ell}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), r\right)$$
(11)

for all $x \in X$ and all r > 0. It is easy to see that

$$\frac{h_o(T^b x)}{T^b} - h_o(x) = \sum_{i=0}^{b-1} \frac{h_o(T^{i+1}x)}{T^{i+1}} - \frac{h_o(T^i x)}{T^i} \quad (12)$$

for all $x \in X$. From equations (11) and (12), we have

$$P_{-\pounds}\left(\frac{h_{o}(T^{b}x)}{T^{b}} - h_{o}(x), \sum_{i=0}^{b-1} \frac{a^{i}r}{2T \cdot T^{b}}\right)$$

$$\leq_{L^{*}} T_{i=0}^{b-1}\left(P'_{-\pounds}\left(\sum_{i=0}^{b-1} \frac{h_{o}(T^{i+1}x)}{T^{i+1}} - \frac{h_{o}(T^{i}x)}{T^{i}}, \sum_{i=0}^{b-1} \frac{a^{i}r}{2T \cdot T^{b}}\right)\right)$$

$$\leq_{L^{*}} T_{i=0}^{b-1}\left\{P'_{-\pounds}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), r\right)\right\}$$

$$\leq_{L^{*}} P'_{-\pounds}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), r\right)$$
(13)

for all $x \in X$ and all r > 0. Replacing x by $T^c x$ in (??) and using (1), (*IFN* 3), we obtain

$$P_{-\pounds}\left(\frac{h_{o}(T^{b+c}x)}{T^{b+c}} - \frac{h_{o}(T^{c}x)}{T^{c}}, \sum_{i=0}^{b-1} \frac{a^{i}r}{2T \cdot T^{i+c}}\right)$$

$$\leq_{L^{*}} P'_{-\pounds}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), \frac{r}{a^{c}}\right)$$
(14)

for all $x \in X$ and all r > 0 and all $b, c \ge 0$. Replacing r by $a^c r$ in (14), we get

$$P_{-\pounds}\left(\frac{h_{o}(T^{b+c}x)}{T^{b+c}} - \frac{h_{o}(T^{c}x)}{T^{c}}, \sum_{i=0}^{b+c-1} \frac{a^{i}r}{2T \cdot T^{i}}\right)$$

$$\leq_{L^{*}} P_{-\pounds}'\left(\Lambda\left(\underbrace{0,\cdots,0}_{2n-1\ times}, x, 0\right), r\right)$$
(15)

for all $x \in X$ and all r > 0 and all $b, c \ge 0$. It follows from (15), that

$$P_{-\pounds}\left(\frac{h_{o}(T^{b+c}x)}{T^{b+c}} - \frac{h_{o}(T^{c}x)}{T^{c}}, r\right)$$

$$\leq_{I^{*}} P_{-\pounds}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), \frac{T}{\sum_{i=0}^{b+c-1} \frac{a^{i}}{2T \cdot T^{i}}}\right)$$
(16)

holds for all $x \in X$ and all r > 0 and all $b, c \ge 0$. Since

$$0 < a < T$$
 and $\sum_{i=0}^{b} \left(\frac{a}{T}\right)^{i} < \infty$. Thus $\left\{\frac{h_{o}(T^{b}x)}{T^{b}}\right\}$ is a

Cauchy sequence in $(Y, P_{-, \varepsilon}, T)$. Since $(Y, P_{-, \varepsilon}, T)$ is a complete IFN-space this sequence convergent to some point $A(v) \in Y$. So, one can define the mapping $A: X \to Y$ by

$$P_{-\pounds}\left(A(x) - \frac{h_o(T^b x)}{T^b}, r\right) \to 1_L^*, \ as \ b \to \infty, \ r > 0$$
(17)

for all $x \in X$. Letting c = 0 in (16), we get

$$P_{-\pounds}\left(\frac{h_{o}(T^{b}x)}{T^{b}} - h_{o}(x), r\right)$$

$$\leq_{L^{*}} P'_{-\pounds}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n - 1 \text{ times}}, x, 0\right), \frac{T}{\sum_{i=0}^{b-1} \frac{a^{i}}{2T \cdot T^{i}}}\right) \quad (18)$$

for all $x \in X$ and all r > 0. Now for every $\vee > 0$ and from (18), we have

 $P_{-,\varepsilon}\left(A(x) - h_o(x), r + \vee\right)$

$$\leq_{L^{*}} T \begin{pmatrix} P'_{-\varepsilon} \left(A(x) - \frac{h_{o}(T^{b}x)}{T^{b}}, \mathsf{V} \right), \\ P'_{-\varepsilon} \left(h_{o}(x) - \frac{h_{o}(T^{b}x)}{T^{b}}, r \right) \end{pmatrix}$$

$$\leq_{L^{*}} T \begin{pmatrix} P'_{-\varepsilon} \left(A(x) - \frac{h_{o}(Tx)}{T^{b}}, \mathsf{V} \right), \\ P'_{-\varepsilon} \left(\Lambda \left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0 \right), \frac{r}{\sum_{i=0}^{b-1} \frac{a^{i}}{2T \cdot T^{i}}} \right) \end{pmatrix}$$
(19)

for all $x \in X$ and all r > 0. Taking the limit as $b \to \infty$ in (19), we get

$$P_{-\pounds}\left(A(x) - h_{o}(x), r + \mathbf{V}\right)$$

$$\leq_{L^{*}} T\left(1_{L^{*}}, P'_{-\pounds}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), (2T - 2a)r\right)\right) \quad (20)$$

$$\leq_{L^{*}} P'_{-\pounds}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), (2T - 2a)r\right)$$

for all $x \in X$ and all r > 0 and $\lor > 0$. Since \lor is arbitrary, by taking $\lor \to 0$ in (20), we obtain

$$P_{-\varepsilon}\left(A(x) - h_{o}(x), r\right)$$

$$\leq_{L^{*}} P'_{-\varepsilon}\left(\Lambda\left(\underbrace{0, \dots, 0}_{2n-1 \text{ times}}, x, 0\right), (2T - 2a)r\right)$$
(21)

for all $x \in X$ and all r > 0. To prove A satisfies (5), replacing $(x_0, x_1, \dots x_{2n}, x_{2n+1})$ by

 $(T^b x_0, T^b x_1, \cdots T^b x_{2n}, T^b x_{2n+1})$ in(3) respectively, we obtain

$$P_{-\pounds}\left(\frac{1}{T}Dh_{o}(T^{b}x_{0},T^{b}x_{1},\cdots T^{b}x_{2n},T^{b}x_{2n+1}),r\right)$$

$$\leq_{L^{*}}P_{-\pounds}\left(\dagger(T^{b}x_{0},T^{b}x_{1},\cdots T^{b}x_{2n},T^{b}x_{2n+1}),T^{b}r\right)$$
(22)

for all $x_0, x_1, \dots, x_{2n+1} \in X$ and all r > 0. Now,

$$\begin{split} & P_{-\varepsilon} \left(\sum_{k=0}^{n} \left[\sum_{l=1}^{2} h\left(\frac{d_{2k} x_{2k} + (-1)^{l} d_{2k+l} x_{2k+l}}{2} \right) \right] \right) \\ &= \sum_{k=0}^{n} \left[\sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k}) \right] \right] \right], r \\ &+ \left(\frac{d_{2k+l}}{2} \right)^{2} \left[h(x_{2k+l}) + h(-x_{2k+l}) \right] \right], r \\ &\leq_{L^{*}} \left\{ P^{*}_{-\varepsilon} \left(\sum_{k=0}^{n} \left[\sum_{l=1}^{2} h\left(\frac{d_{2k} x_{2k} + (-1)^{l} d_{2k+l} x_{2k+l}}{2} \right) \right] \right] \\ &- \frac{1}{T^{b}} \sum_{k=0}^{n} \left[T^{b} \sum_{l=1}^{2} h\left(\frac{d_{2k} x_{2k} + (-1)^{l} d_{2k+l} x_{2k+l}}{2} \right) \right] \right], \frac{r}{4} \right], \\ & P^{*}_{-\varepsilon} \left(\sum_{k=0}^{n} \left[\sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k}) \right] \right] \right] \right] \\ &- \frac{1}{T^{b}} \sum_{k=0}^{n} \left[T^{b} \sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k}) \right] \right] \right], \frac{r}{4} \right], \\ & P^{*}_{-\varepsilon} \left(\sum_{k=0}^{n} \left[\left(\frac{d_{2k+l}}{2} \right)^{2} \left[h(x_{2k+l}) + h(-x_{2k+l}) \right] \right] \right] \\ &+ \frac{1}{T^{b}} \sum_{k=0}^{n} \left[T^{b} \left(\frac{d_{2k+l}}{2} \right)^{2} \left[h(x_{2k+l}) + h(-x_{2k+l}) \right] \right], \frac{r}{4} \right], \\ & P_{-\varepsilon} \left(\frac{1}{T^{b}} \sum_{k=0}^{n} \left[T^{b} \sum_{l=1}^{2} h\left(\frac{d_{2k} x_{2k} + (-1)^{l} d_{2k+l} x_{2k+l}}{2} \right) \right] \\ &- \sum_{k=0}^{n} \frac{1}{T^{b}} \left[T^{b} \sum_{l=1}^{2} \left[\left(\frac{d_{2k+l}}{2} \right)^{2} \left[h(x_{2k+l}) + h(-x_{2k+l}) \right] \right] \right], r \\ & \int_{-\infty}^{\infty} \left[\frac{1}{T^{b}} \sum_{k=0}^{\infty} \left[T^{b} \sum_{l=1}^{2} \left[\left(\frac{d_{2k+l}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k+l}) \right] \right] \right], r \\ & \int_{-\infty}^{\infty} \left[\frac{1}{T^{b}} \sum_{k=0}^{\infty} \left[T^{b} \sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k+l}) \right] \right] \right], r \\ & \int_{-\infty}^{\infty} \left[\frac{1}{T^{b}} \sum_{k=0}^{\infty} \left[T^{b} \sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k+l}) \right] \right] \right], r \\ & \int_{-\infty}^{\infty} \left[\frac{1}{T^{b}} \sum_{k=0}^{\infty} \left[T^{b} \sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k}) + (-1)^{l} h(-x_{2k+l}) \right] \right] \right], r \\ & \int_{-\infty}^{\infty} \left[\frac{1}{T^{b}} \sum_{k=0}^{\infty} \left[T^{b} \sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[h(x_{2k+l}) + (-1)^{l} h(-x_{2k+l}) \right] \right] \right], r \\ & \int_{-\infty}^{\infty} \left[\frac{1}{T^{b}} \sum_{k=0}^{\infty} \left[T^{b} \sum_{l=1}^{\infty} \left[\frac{1}{T^{b}} \sum_{k=0}^{\infty} \left[T^{b} \sum_{l=1}^{\infty} \left[T^{b} \sum_{k=0}^{\infty}$$

for all $x_0, x_1, \dots, x_{2n}, x_{2n+1} \in X$ and all r > 0. Letting $b \to \infty$ in the above and using (22),(2), we arrive

$$P_{-\pounds}\left(\sum_{k=0}^{n}\left[\sum_{l=1}^{2}h\left(\frac{d_{2k}x_{2k} + (-1)^{l}d_{2k+1}x_{2k+1}}{2}\right)\right]\right)$$
$$=\sum_{k=0}^{n}\left[\sum_{l=1}^{2}\left[\left(\frac{d_{2k}}{2}\right)^{l}\left[h(x_{2k}) + (-1)^{l}h(-x_{2k})\right]\right]\right], r\right] + \left(\frac{d_{2k+1}}{2}\right)^{2}\left[h(x_{2k+1}) + h(-x_{2k+1})\right]\right], r\right]$$
$$\leq_{L^{*}}T\left(\frac{1_{L^{*}}, 1_{L^{*}}, 1_{L^{*}}, 1_{L^{*}}, P'_{-\pounds}}{\left(\Lambda(T^{b}x_{0}, T^{b}x_{1}, \cdots T^{b}x_{2n}, T^{b}x_{2n+1}), T^{b}r\right)\right)$$
(23)

 $\leq_{L^{*}} P'_{-\varepsilon} \left(\Lambda(T^{b} x_{0}, T^{b} x_{1}, \cdots T^{b} x_{2n}, T^{b} x_{2n+1}), T^{b} r \right)$ (24)

for all $x_0, x_1, \dots, x_{2n}, x_{2n+1} \in X$ and all r > 0. Letting $b \to \infty$ in (24) and using (2), (*IFN* 2), we arrive

$$\sum_{k=0}^{n} \left[\sum_{l=1}^{2} A\left(\frac{d_{2k} x_{2k} + (-1)^{l} d_{2k+1} x_{2k+1}}{2} \right) \right]$$
$$= \sum_{k=0}^{n} \left[\sum_{l=1}^{2} \left[\left(\frac{d_{2k}}{2} \right)^{l} \left[A(x_{2k}) + (-1)^{l} A(-x_{2k}) \right] \right] + \left(\frac{d_{2k+1}}{2} \right)^{2} \left[A(x_{2k+1}) + A(-x_{2k+1}) \right] \right]$$

for all $x_0, x_1, \dots x_{2n}, x_{2n+1} \in X$. Hence A satisfies the functional equation (5). In order to prove A(x) is unique, let A'(x) be another Additive functional equation satisfying (5). Hence,

$$\begin{aligned} P_{-\pounds}\left(A(x) - A'(x), r\right) \\ \leq_{L^*} T \begin{pmatrix} P_{-\pounds}\left(A(T^b x) - \frac{f_o(T^b x)}{T^b}, \frac{T^b r}{2}\right), \\ P_{-\pounds}\left(\frac{h_o(T^b x)}{T^b} - A'(T^b x), \frac{T^b r}{2}\right) \end{pmatrix} \\ \leq_{L^*} P_{-\pounds}'\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, T^b, 0\right), \frac{T^b}{2}(2T - 2a)r\right) \\ \leq_{L^*} P_{-\pounds}'\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), \frac{T^b}{2}(2T - 2a)r\right) \end{aligned}$$

for all $x \in X$ and all r > 0. Since $\lim_{b \to \infty} \frac{T^b}{2} (2T - 2a) = \infty$, we obtain

$$\lim_{n \to \infty} P'_{-, \notin} \left(\Lambda \left(\underbrace{0, \dots, 0}_{2n-1 \text{ times}}, x, 0 \right), \frac{T^b}{2} (2T - 2a) r \right) = \mathbb{1}_{L^*}$$

Thus
$$P_{-, \pounds} \left(A(x) - A'(x), r \right) = \mathbb{1}_{L^*}$$

for all $x \in X$ and all r > 0, hence A(x) = A'(x). Therefore A(x) is unique.

For u = -1, we can prove the similar stability result. This completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 3.1, regarding the stability of(5)

Corollary 3.2 Suppose that an odd function $h_o: X \to Y$ satisfies the inequality

$$P_{-\hat{\varepsilon}}\left(Dh(x_{0},x_{1},\cdots,x_{2n},x_{2n+1}),r\right)$$

$$\leq_{L^{s}}\begin{cases}P_{-\hat{\varepsilon}}\left(\frac{1}{2},r\right),\\P_{-\hat{\varepsilon}}\left(\frac{1}{2}\sum_{i=0}^{2n+1}||x_{i}||^{s},r\right),\\P_{-\hat{\varepsilon}}\left(\frac{1}{2}\left(\prod_{i=0}^{2n+1}||x_{i}||^{s}+\sum_{i=1}^{2n+1}||x_{i}||^{2n+1s}\right),r\right),\end{cases}$$
(25)

for all $x_0, x_1, \dots x_{2n}, x_{2n+1} \in X$ and all r > 0, where }, *s* are constants with $\} > 0$. Then there exists a unique Additive mapping $A: X \to Y$ such that

$$P_{-\hat{\ell}}\left(h_{o}(x) - A(x), r\right) \leq \sum_{L^{*}} \begin{cases} P_{-\hat{\ell}}\left(\frac{1}{2}, 2 \mid T - T^{0} \mid r\right), \\ P_{-\hat{\ell}}\left(\frac{1}{2} \mid x \mid |^{s}, 2 \mid T - T^{s} \mid r\right), & s \neq 1; \\ P_{-\hat{\ell}}\left(\frac{1}{2} \mid x \mid |^{(2n+1)s}, 2 \mid T - T^{(2n+1)s} \mid r\right), & s \neq \frac{1}{2n+1}; \end{cases}$$

$$(26)$$

for all $x \in X$ and all r > 0. Proof. Replacing $\Delta(x_1, x_2, \dots, x_{n-1})$

$$\begin{aligned} & \{X_{\alpha_0}, x_1, \cdots x_{2n}, x_{2n+1}\} \\ & = \begin{cases} \}, \\ \} \left(|| \ x_0 \ ||^s + || \ x_1 \ ||^s + \cdots + || \ x_{2n} \ ||^s + || \ x_{2n+1} \ ||^s \right), \\ \} \left\{ || \ x_0 \ ||^s \ || \ x_1 \ ||^s \cdots || \ x_{2n} \ ||^s \ || \ x_{2n+1} \ ||^s \\ + \left(|| \ x_0 \ ||^{(2n+1)s} + || \ x_1 \ ||^{(2n+1)s} + \cdots + || \ x_{2n} \ ||^{ns} + || \ x_{2n+1} \ ||^{(2n+1)s} \right) \right\}, \end{aligned}$$

then the corollary is followed from Theorem 3.1. If we define

$$a = \begin{cases} T^{0}, \\ T^{s}, \\ T^{(2n+1)s}. \end{cases} \text{ where } T = \frac{d_{2n}}{2}.$$

The proof of the following Theorem and Corollary is similar tracing to that of Theorem 3.1 and Corollary 3.2, when h_e is even. Hence the details of the proof is omitted.

Theorem 3.3 Let $U \in \{1, -1\}$. Let $\Lambda : X^n \to Z$ be a function such that for some $0 < \left(\frac{a}{T^2}\right)^u < 1$,

$$P'_{-\pounds}\left(\Lambda\left(\underbrace{0,\cdots,0}_{2n-1\,\text{times}},T^{ub}x,0\right),r\right) \leq_{L^*} P'_{-\pounds}\left(a^{ub} \Lambda\left(\underbrace{0,\cdots,0}_{2n-1\,\text{times}},x,0\right),r\right)$$
(27)

for all $x \in X$ and all r > 0 and

$$\lim_{b\to\infty} P'_{-\varepsilon} \left(\Lambda \left(T^{ub} x_0, T^{ub} x_1, T^{ub} x_2, \cdots, T^{ub} x_{2n}, T^{ub} x_{2n+1} \right), T^{ub} r \right) = \mathbf{1}_{L^*} (28)$$

for all $x_0, x_1, \dots x_{2n}, x_{2n+1} \in X$ and all r > 0. Let $h_e: X \to Y$ be an even function satisfies the inequality

$$P_{\neg, \varepsilon} \left(Dh_{e}(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r \right) \\
 \leq_{L^{*}} P_{\neg, \varepsilon} \left(\Lambda \left(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1} \right), r \right)$$
(29)

for all $x_0, x_1, \cdots x_{2n}, x_{2n+1} \in X$ and all r > 0. Then the limit

$$P_{-,\ell}\left(Q(x) - \frac{h_e(T^{2b}x)}{T^{2b}}, r\right) \to 1_L^*, as \quad b \to \infty, \quad r > 0 \quad (30)$$

exists for all $x \in X$ and the mapping $Q: X \to Y$ is a unique quadratic mapping satisfying (5) and

$$P_{-\pounds} \left(h_{o}(x) - Q(x), r \right) \\ \leq_{L^{*}} P'_{-\pounds} \left(\Lambda \left(\underbrace{0, \dots, 0}_{2n - 1 \text{ times}}, x, 0 \right), |(2T)^{2} - (2a)^{2} | 2r \right)$$
(31)

for all $x \in X$ and all r > 0.

Corollary 3.4 Suppose that an even function $h_e: X \to Y$ satisfies the inequality

$$P_{-\pounds} \left(Dh(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r \right)$$

$$\leq_{L^{*}} \begin{cases} P'_{-\pounds} \left(\right\}, r \right), \\ P'_{-\pounds} \left(\right\} \sum_{i=0}^{2n+1} || x_{i} ||^{s}, r \right), \\ P'_{-\pounds} \left(\right\} \left(\prod_{i=0}^{2n+1} || x_{i} ||^{s} + \sum_{i=1}^{2n+1} || x_{i} ||^{2n+1s} \right), r \right), \end{cases}$$
(32)

for all $x_0, x_1, \dots, x_{2n}, x_{2n+1} \in X$ and all r > 0, where $\}, s$ are constants with $\} > 0$. Then there exists a unique quartic mapping $Q: X \to Y$ such that

$$P_{-\ell}\left(h_{\ell}(x) - Q(x), r\right) \leq \int_{L^{*}} \begin{cases} P_{-\ell}\left(\frac{1}{2}, 2 | T^{2} - T^{0} | r\right), \\ P_{-\ell}'\left(\frac{1}{2} | | x | |^{s}, 2 | T^{2} - T^{s} | r\right), & s \neq 2; \\ P_{-\ell}'\left(\frac{1}{2} | | x | |^{(2n+1)s}, 2 | T^{2} - T^{(2n+1)s} | r\right), & s \neq \frac{2}{2n+1}; \end{cases}$$
(33)

for all $x \in X$ and all r > 0.

Theorem 3.5 Let $U = \pm 1$ be fixed and let $\Lambda : X^n \to Z$ be a mapping such that for some d with $0 < \left(\frac{a}{T}\right)^u < 1$ and

 $0 < \left(\frac{a}{T^2}\right)^u < 1$ satisfying (1),(2),(27) and (28). Suppose that

a function $h: X \to Y$ satisfies the inequality

$$P_{,\xi} \left(Dh(x_0, x_1, \cdots, x_{2n}, x_{2n+1}), r \right)$$

$$\leq_{L^*} P'_{,\xi} \left(\Lambda \left(x_0, x_1, \cdots, x_{2n}, x_{2n+1} \right), r \right)$$
(34)

for all $x_0, x_1, \dots x_{2n}, x_{2n+1} \in X$ and all r > 0. Then there exists a unique additive mapping $A: X \to Y$ and unique quadratic mapping $Q: X \to Y$ satisfying (5) and

$$P_{-,\varepsilon}\left(h(x) - A(x) - Q(x), r\right)$$

$$\leq_{L^{*}} P_{-,\varepsilon}^{3}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), r\right)$$
(35)

where

$$P_{-,\epsilon}^{3}\left(\Lambda\left(\underbrace{0,\cdots,0}_{2n-1\,\text{times}},x,0\right),r\right)$$
$$=T\left\{P_{-,\epsilon}^{1}\left(\Lambda\left(\underbrace{0,\cdots,0}_{2n-1\,\text{times}},x,0\right),|\,2T-2a\,|\,r\right),\right.\\\left.P_{-,\epsilon}^{2}\left(\Lambda\left(\underbrace{0,\cdots,0}_{2n-1\,\text{times}},x,0\right),|\,(2T)^{2}-(2a)^{2}\,|\,r\right)\right\}\right\}$$
(36)

for all $x \in X$ and all r > 0.

Proof. Let $h_a(x) = \frac{h_o(x) - h_o(-x)}{2}$ for all $x \in X$. Then $h_a(0) = 0$ and $h_a(-x) = -h_a(x)$ for all $x \in X$. Hence

$$P_{\neg, \notin} \left(D h_{a}(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r \right)$$

$$\leq_{L^{*}} T \left\{ P'_{\neg, \notin} \left(D h_{o}(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r \right) \right\}$$

$$P'_{\neg, \notin} \left(D h_{o}(-x_{0}, -x_{1}, \cdots, -x_{2n}, -x_{2n+1}), r \right) \right\}$$

$$\leq_{L^{*}} T \left\{ P'_{\neg, \notin} \left(\Lambda(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r \right) \right\}$$

$$P'_{\neg, \notin} \left(\Lambda(-x_{0}, -x_{1}, \cdots, -x_{2n}, -x_{2n+1}), r \right) \right\}$$

$$(37)$$

for all $x_0, x_1, \dots x_{2n}, x_{2n+1} \in X$ and all r > 0. By Theorem 3.1 there exists a unique additive mapping $A: X \to Y$ such that

$$P_{-\pounds}\left(h_{o}(x) - A(x), r\right)$$

$$\leq_{L^{*}} P_{-\pounds}^{1}\left(\Lambda\left(\underbrace{0, \cdots, 0}_{2n-1 \text{ times}}, x, 0\right), |2T - 2a|2r\right)$$
(38)

for all $x \in X$ and all r > 0, where

$$P_{\sim,\ell}^{1}\left(\Lambda(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r\right)$$

$$= T \begin{cases} P_{\sim,\ell}\left(\Lambda(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r\right), \\ P_{\sim,\ell}^{*}\left(\Lambda(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r\right) \end{cases}$$
(39)

 $\text{for all } x_0, x_1, \cdots x_{2n}, x_{2n+1} \in X \ \text{ and all } r > 0 \, .$

Also, let
$$h_q(x) = \frac{h_e(x) + h_e(-x)}{2}$$
 for all $x \in X$.

Then $h_q(0) = 0$ and $h_q(-x) = h_q(x)$ for all $x \in X$. Hence

$$P_{-, \ell} \left(D h_{q}(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r \right)$$

$$\leq_{L^{*}} T \left\{ P'_{-, \ell} \left(D h_{e}(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r \right) \right\}$$

$$P'_{-, \ell} \left(D h_{e}(-x_{0}, -x_{1}, \cdots, -x_{2n}, -x_{2n+1}), r \right) \right\}$$

$$\leq_{L^{*}} T \left\{ P'_{-, \ell} \left(\Lambda(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r \right) \right\}$$

$$P'_{-, \ell} \left(\Lambda(-x_{0}, -x_{1}, \cdots, -x_{2n}, -x_{2n+1}), r \right) \right\}$$

$$(40)$$

for all $x_0, x_1, \dots x_{2n}, x_{2n+1} \in X$ and all r > 0. By Theorem 3.3, there exists a unique quadratic mapping $Q: X \to Y$ such that

$$P_{-,\varepsilon}\left(h_{\varepsilon}(x)-Q(x),r\right) \leq_{L^{*}} P_{-,\varepsilon}^{2}\left(\Lambda\left(\underbrace{0,\cdots,0}_{2n-1\,\text{times}},x,0\right),2\mid (2T)^{2}-(2a)^{2}\mid r\right)$$
(41)

for all $x \in X$ and all r > 0, where

$$P_{\sim,\epsilon}^{2}\left(\Lambda(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r\right)$$

$$= T \left\{ P_{\sim,\epsilon}^{\prime}\left(\Lambda(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r\right), \left\{ P_{\sim,\epsilon}^{\prime}\left(\Lambda(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r\right) \right\}$$
(42)

for all $x_0, x_1, \dots x_{2n}, x_{2n+1} \in X$ and all r > 0. Define $h(x) = h_a(x) + h_q(x)$ (43)

for all
$$x \in X$$
. From (35),(38) and (39), we arrive
 $P_{-,\varepsilon}(h(x) - A(x) - Q(x), r)$
 $= P_{-,\varepsilon}(h_a(x) + f_q(x) - A(x) - Q(x), r)$
 $\leq_{t^*} T \left\{ P_{-,\varepsilon}\left(h_a(x) - A(x), \frac{r}{2}\right), P_{-,\varepsilon}\left(h_q(x) - Q(x), \frac{r}{2}\right) \right\}$
 $\leq_{t^*} T \left\{ P_{-,\varepsilon}^1\left(\Lambda\left(\underbrace{0, \dots, 0}_{2n-1 \text{ times}}, x, 0\right), |2T - 2a|r\right) \right\}$ where
 $, P_{-,\varepsilon}^2\left(\Lambda\left(\underbrace{0, \dots, 0}_{2n-1 \text{ times}}, x, 0\right), |(2T)^2 - (2a)^2|r\right) \right\}$
 $= P_{-,\varepsilon}^3\left(\Lambda\left(\underbrace{0, \dots, 0}_{2n-1 \text{ times}}, x, 0\right), r\right)$
 $P_{-,\varepsilon}^3\left(\Lambda\left(\underbrace{0, \dots, 0}_{2n-1 \text{ times}}, x, 0\right), |2T - 2a|r\right),$ (44)
 $P_{-,\varepsilon}^2\left(\Lambda\left(\underbrace{0, \dots, 0}_{2n-1 \text{ times}}, x, 0\right), |(2T)^2 - (2a)^2|r\right) \right\}$

for all $x \in X$ and all r > 0. Hence the theorem is proved.

The following corollary is the immediate consequence of corollaries 3.2, 3.4 and Theorem 3.5 concerning the stability for the functional equation (5).

Corollary 3.6 Suppose that a function $h: X \to Y$ satisfies the inequality

$$P_{\neg, \ell} \left(Dh(x_{0}, x_{1}, \cdots, x_{2n}, x_{2n+1}), r \right)$$

$$\leq \int_{L^{*}} \begin{cases} P'_{\neg, \ell} \left(\right\}, r \right), \\ P'_{\neg, \ell} \left(\right\} \sum_{i=1}^{2n+1} || x_{i} ||^{s}, r \right), \\ P'_{\neg, \ell} \left(\right\} \left(\prod_{i=1}^{2n+1} || x_{i} ||^{s} + \sum_{i=1}^{2n+1} || x_{i} ||^{(2n+1)s}), r \right), \end{cases}$$
(45)

for all $x_0, x_1, \dots x_{2n}, x_{2n+1} \in X$ and all r > 0, where $\}, s$ are constants with $\} > 0$. Then there exists a unique additive mapping $A: X \to Y$ and a unique quadratic mapping $Q: X \to Y$ such that

$$P_{-,\varepsilon}\left(h(x) - A(x) - Q(x), r\right) = \begin{cases} T\{P'_{-,\varepsilon}\left(\frac{1}{2}, 2 | T - T^{0} | r\right), \\ P'_{-,\varepsilon}\left(\frac{1}{2}, 2 | T^{2} - T^{0} | r\right)\} \\ T\{P'_{-,\varepsilon}\left(\frac{1}{2} | x | |^{s}, 2 | T - T^{s} | r\right), \\ P'_{-,\varepsilon}\left(\frac{1}{2} | x | |^{s}, 2 | T^{2} - T^{s} | r\right)\}, \quad s \neq 1, 2; \\ T\{P'_{-,\varepsilon}\left(\frac{1}{2} | x | |^{(2n+1)s}, 2 | T - T^{(2n+1)s} | r\right), \\ P'_{-,\varepsilon}\left(\frac{1}{2} | x | |^{(2n+1)s}, 2 | T^{2} - T^{(2n+1)s} | r\right)\}, \quad s \neq \frac{1}{2n+1}, \frac{2}{2n+1}; \end{cases}$$

$$(46)$$

for all $x \in X$ and all r > 0.

References

- [1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
- [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950),64-66.
- [3] M. Arunkumar, G. Ganapathy, S. Murthy, S. Karthikeyan, Stability of the Generalized Arunadditive functional equation in Intuitionistic fuzzy normed spaces, International Journal Mathematical Sciences and Engineering Applications, Vol.4, No. V, December 2010, 135-146.
- [4] M. Arunkumar, S. Karthikeyan, Solution and Stability Of *n*-Dimensional Mixed Type Additive and Quadratic Functional Equation, Far East Journal of Applied Mathematics, 54 1 (2011) 47-64.
- [5] M. Arunkumar, P. Agilan, Additive Quadratic functional equation are Stable in Banach space: A Fixed Point Approach, International Journal of pure and Applied Mathematics, Vol. 86, No.6, (2013), 951 – 963.
- [6] M. Arunkumar, P. Agilan, Additive Quadratic functional equation are Stable in Banach space: A Direct Method, Far East Journal of Mathematical Sciences, Volume 80, No. 1, (2013), 105 – 121.
- [7] M. Arunkumar, P. Agilan, Random stability of a additive quadratic Functional equation, Proceedings of International Conference on Applied Mathematical Models, ICAMM 2014, 271 – 278.
- [8] M. Arunkumar, P. Agilan, C. Devi Shyamala Mary, Permanence of A Generalized AQ Functional Equation In Quasi-Beta Normed Spaces, A Fixed Point Approach, Proceedings of the International Conference on Mathematical Methods and Computation, Jamal Academic Research Journal an Interdisciplinary, (February 2014), 315-324.
- [9] M.Arunkumar, P. Agilan, Fixed point stability of a AQ functional equation in RN space, Proceedings of National Conference on Pure and Applied Mathematics, (2014), 37-44, ISBN: 978-93-83459-46-9.

- [10] M. Arunkumar, P. Agilan, Stability of A AQC Functional Equation in Fuzzy Normed Spaces: Direct Method, Jamal Academic Research Journal an Interdisciplinary,(2015), 78-86
- [11] M. Arunkumar, P. Agilan, N. Mahesh kumar, Ulam-Hyers stability of a r_i type *n* dimensional additive quadratic functional equation in quasi beta normed spaces: a fixed point approach, Malaya Journal of Mathematics, (2015), 192 - 202.
- [12] M. Arunkumar, P. Agilan, Solution and Ulam-Hyers stability of a r_i type *n* dimensional additive quadratic functional equation in quasi beta normed spaces, Malaya Journal of Mathematics, (2015), 203 214.
- [13] M. Arunkumar, P. Agilan, C. Devi Shyamala Mary, Permanence of A Generalized AQ Functional Equation In Quasi-Beta Normed Spaces, International Journal of Pure and Applied Mathematics, Vol. 101, No. 6 (2015), 1013-1025.
- [14] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [15] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951) 223 - 237.
- [16] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
- [17] G. Deschrijver, E.E. Kerre On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 23 (2003), 227-235.
- [18] M. Eshaghi Gordji, Stability of an Additive-Quadratic Functional Equation of Two Variables in F-Spaces, J. Nonlinear Sci. Appl. 2 (2009), no. 4, 251-259
- [19] M. Eshaghi Gordji, N.Ghobadipour, J. M. Rassias, Fuzzy Stability of Additive-Quadratic Functional Equations, arxiv:0903.0842v1 [math.fa]. 2009
- [20] Z. Gajda and R.Ger, Subadditive multifunctions and Hyers-Ulam stability, in General Inequalites 5, Internat Schrifenreiche Number. Math.Vol. 80, Birkhauser \ Basel, 1987.
- [21] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
- [22] S.B. Hosseini, D. O'Regan, R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Syst, 4 (2007) 53-64.
- [23] D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224.
- [24] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.

- [25] K.W. Jun and H.M.Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, Math. J., Anal. Appl. 274, (2002), 867-878.
- [26] B. Margoils, J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull.Amer. Math. Soc. 126 74 (1968), 305-309.
- [27] A.K. Mirmostafaee, M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), no. 6, 720-729.
- [28] A.K. Mirmostafaee, M. Mirzavaziri, M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), no. 6, 730-738.
- [29] A.K. Mirmostafaee, M.S. Moslehian, Fuzzy almost quadratic functions, Results Math. doi:10.1007/s00025-007-0278-9.
- [30] M. Mursaleen, S.A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 42 (2009), no. 5, 2997-3005.
- [31] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039-1046.
- [32] C. Park, Orthogonal Stability of an Additive-Quadratic Functional Equation, Fixed Point Theory and Applications, doi:10.1186/1687-1812-2011-66
- [33] Matina J. Rassias, M. Arunkumar, S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal Of Concrete And Applicable Mathematics (JCAAM), Vol. 14 No. 1-2, (2014), 22 -46.
- [34] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.
- [35] J.M. Rassias, M.J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on the restricted domains, J. Math. Anal. Appl., 281 (2003), 516-524.
- [36] John M. Rassias, M. Arunkumar, P. Agilan, Solution and Ulam – Hyers stability of an additive – quadratic functional equation in Banach Space: Hyers Direct and Fixed Point Methods, International Journal of Mathematics and its Applications, Volume 3, Issue 4 – D (2015), 17-46.
- [37] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.
- [38] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
- [39] K. Ravi, M. Arunkumar, J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of

Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.

- [40] R. Saadati, J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27 (2006), 331-344.
- [41] R. Saadati, J.H. Park, Intuitionstic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), 85-90.
- [42] S. Shakeri, Intuitionstic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appli. Vol.2 No. 2 (2009), 105-112.
- [43] Sun Sook Jin, Yang Hi Lee, A Fixed Point Approach to The Stability of the Cauchy Additive and Quadratic Type Functional Equation, Journal of Applied Mathematics 16 pages, doi:10.1155/2011/817079
- [44] Sun Sook Jin, Yang Hi Lee, Fuzzy Stability of a Quadratic-Additive Functional Equation, International Journal of Mathematics and Mathematical Sciences 6 pages, doi:10.1155/2011/504802
- [45] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.
- [46] G. Zamani Eskandani, Hamid Vaezi, Y. N. Dehghan, Stability of a Mixed Additive and Quadratic Functional Equation in Non-Archimedean Banach Modules, Taiwanese Journal of Mathematics, vol. 14, no. 4, (2010), 1309-1324.
- [47] Ding Xuan Zhou, On a conjecture of Z. Ditzian, J. Approx. Theory 69 (1992), 167-172.
