International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614 Available Online at www.journalijcar.org Volume 7; Issue 6(B); June 2018; Page No. 13210-13212 DOI: http://dx.doi.org/10.24327/ijcar.2018.13212.2344

MAGNETIC SUSCEPTIBILITY ANALYSIS USING WORKSHEET

Rio Sandhika Darma*., Puji Iman Nursuhud and Heru Kuswanto

Graduate Program, Department of Physics Education, Yogyakarta State University

ARTICLE INFO	ABSTRACT							
Article History: Received 9 th March, 2018 Received in revised form 16 th	The Worksheet is very easy to use. In the basic for use of the Worksheet, there is an important aspect of the Worksheet is Spreadsheets which can be used to analyze data. Spreadsheets can also be used as graphic simulation tools. The graph simulation to be analyzed is graph of magnetic susceptibility to temperature							

Key words:

Spreadsheet, magnetic susceptibility

April, 2018 Accepted 3rd May, 2018 Published online 28th June, 2018

Copyright©2018 **Rio Sandhika Darma., Puji Iman Nursuhud and Heru Kuswanto.** This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The use of Spreadsheets in presenting simulations is indeed very popular among teachers and students. Worksheet one of the programs made by Microsoft companies already support for the use of Spreadsheet. So everyone who is not a programmer can use it. From various experts have also utilized this speasdheet for research, business, and education (Uddin dkk, 2017). This graphical animation method has the potential to revolutionize the use of spreadsheets for dynamic process simulations (Wischniewsky, 2008). Graphics are one of the best ways to visualize and investigate the behavior of functions and equations. Graphics depicts more information about function (El-Gebeily and Yushau, 2007).

Magnetic susceptibility is the ability of a magnetic material to be magnetized determined by the magnetic susceptibility value represented by the equation:

$$\vec{M} = k\vec{H}$$
 ...1

 \overline{M} With is magnetic intensityin A/m, k is the value of the susceptibility of a material and has no \overline{H} dimension and is strong magnetic field A/m. Value of k is the basic parameters used in the magnetic method. The value of the susceptibility of rocks is greater if in these rocks are found many minerals that are magnetic. Litology (characteristics) and mineral content of rocks are the factors that affect the susceptibility of a material (Telford, 1990).

Corresponding author:* **Rio Sandhika Darma Graduate Program, Department of Physics Education, Yogyakarta State University From the results of thermodynamic calculations that minimize free energy as a function of temperature, and it is shown that the decrease in susceptibility to temperature and at mid temperature can be proven by equation:

$$\chi = \frac{\mu_0 N p_m^2}{3k_{\rm B}T}$$

With *N* many particles per volume, k_B is Boltzmann constant, *T* temperature stable, μ_0 is vacuum permeability, and p^2_m is dipol moment (Mitchell, 2004).

RESULT AND DISCUSSION

From equation (2) we can determine the value of each variable, so in accordance with the magnetic susceptibility value that we will analyze using the Worksheet application

	a 5-0-+					simula	i jori()) - Di	céš.		1000	- 197		Rio Darr	. 85	1.00	a x
	ie Home Inset															
. 7	Cal Re Copy - B Copy - B of Format Painter Clubband 15	libsi +[11 I <u>U</u> + [⊞ +] Fort	$\mathbf{A} \cdot \mathbf{A} = \mathbf{a}$	iiii iii iii iii ∋ ±ii ±ii iii Algement	Wrap Text Merge & C	enter - 😳	eral - % + 1 Number		editorial Ferm matting • Tab Styles	n al Cal k- Styles-	Insert Delete	Format	∑ AutoSum I Fill -	* Žy Son B Filter -	Find & Select -	
81	• 1 ×	√ <i>fr</i> =6,02	3*10*23													î
14	A 1	B	с	D	E	F	G	н	0.1	1	x	L	M	N	0	P =
1	Partikel per volume	6,023E+23							Constitu	Inc. Mercer	a salata ta	and the		Line -		1.2.
2	Momen Dipol	28-18	1,5E-18						auseptibi	incas magne	c adalah ke	mamp	Ioan suatu	banan n	hagnet un	UK GIM
3	Suhu	20							yang dite	ntukan oleh	nilai susep	stitibil	tas magnet	. Berda	sarkan su:	septibil
4	konstanta Boltzmann	1,388-23							magnet, i paramag	dikarenakan netik.	ı x > 0 mak	a baha	an magnetil	t yang d	ligunakan i	merupa
ŝ	Permeabilitas Vakum	1.25664F-05														
6	konversi	273			Keteran	zan :										
7	beda suhu	20			N	: Banyak p	artikel per	volume			2					
8					kn	: Konstant	a Boltzman	n		$\mu_0 N$	p_m^2					
9	Suhu	Suhu Kelvin	Suseptibilitas 1	Suseptibilitas 2	T	: Suhu			$\chi =$							
10	0	273	267,8673186	150,6753667	µ0	: Permeab	ilitas Vakun	N	1.00	3KB	T					
11	20	293	249,58286	140,3903588	p_m^2	: Momen I	Dipol									
12	40	313	233,6350734	131,4197288												
13	60	333	219,6029369	123,526652												
14	80	353	207,1608441	116,5279748												
15	100	373	196,0530241	110,279826												
16	120	393	186.0757709	104,6676212												
.17	140	413	177,0648377	99,59897122												
	Sheet1	(t)														
Fei	w 11			-		_						_	100 E	四 -		+ 110%

Fig 1 Specifies the particle value constant per volume (N)

	D- 4 - 1						si joni(3) - E							Rio Darma			a ×
	Home Inset																. 🙂
40 120	X Cut Cal Copy - Copy - Cipboard 5	11 U - 11 1 U - 10 - Font	$ \mathbf{A}^* \cdot \mathbf{A}^* = =$ $\frac{2}{2} \cdot \mathbf{A} \cdot \mathbf{A} = =$ $\frac{2}{2}$	in the second s	Wap Text Merge & Ci	onter - 9	nral - % + Bunber	**************************************	nditional Form matting * Ta Shife	wit as Cell Mer Styles	iroert	Delete For		kutoSum Fill * Clear * Ete	Sort & Filter	P Find & Select *	
12		√ £ 42%	0^-18														
4	A	0	c	D	E	F	G	THE .	Г. В.,	ar i	ĸ) E		A L	N	0	P
1	Partikel per volume	6.023E+23							C	then Mare		LL LL		and the			
2	Nomen Dipol	2E-18	1,55-18						Suseptit	illitas mag	net aca	ian kema	mpuan	suatu o	anan m	lagnet un	ux oim
3	iuhu	20							yang ditentukan oleh nilai suseptitibiltas magnet. Berdasarkan susept magnet, dikarenakan x>0 maka bahan magnetik yang digunakan mer naramannetik							septibil	
4	onstanta Boltzmann	1,388-23														merupa	
5	ermeabilitas Vakum	1,25664E-06															
6	onversi	273			Keterang	: 16											
7	seda suhu	20			N	: Sanyak	partikel per	volume			1.2						
8					kB	: Konstan	ta Boltzmar	nn	1007	μ_{0I}	$v p_m$						
9	Suhu	Suhu Kelvin	Suseptibilitas 1	Suseptibilitas 2	T	: Suhu			X =	21.	T						
to	0	273	267,8673186	150,6753667	μο	: Permeal	vilitas Vaku	101		SK	BI						
11	20	293	249,58286	140,3903588	p_{m}^{i}	: Momen	Dipol										
12	40	313	233,6350734	131,4197288													
13	60	333	219,6029369	123,526652													
14	80	353	207,1608441	116,5279748													
15	100	373	196,0530241	110,279826													
.0	120	393	186,0757709	104,6676212													
U.	140	415	1/7,0648377	99,59897122								-	_		_		
	Sheet1																

Fig 2 Determining the material 1 dipole moment value (p^2_m)

	• • · · · ·					simula	i jan(1) - E						Rio Dann			
	e Home Inset															
in the second se	X Cut Capy - 8 Oppoard 15	itei +[11 2 U + □ + Fort	$\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} = \mathbf{A}$	₩ &· E = EIE	Wap Ted Merge (k.)	Center - 💯	end - % + Number	- 9.11 G	nditional Fermi matting Tabl Shifes	en Cel e Styles	inset	Delete Format Cells	∑ AuteSum ∏ Fill +	Son & Filter	P Find & Select *	
	• 1 ×	√ fe =1,5*	10~18													
8			c	D	1	F	G	н	1 1 1	1	ĸ	1	M	N	0	P
P	Partikel per volume	6.023E+23		-			-									
l,	Momen Dipol	25-18	1.SE-18						Suseptibi	litas Magi	net ada	lah kemamp	ouan suatu	bahan n	ragnet unt	tuk dim
15	Saha	20							yang diter	ntukan ole	eh nilai	suseptitibil	tas magnet	Berda	sarkan sus	septibil
	konstanta Boltzmann	1,385-23							magnet. dikarenakan x > 0 maka bahan magnetik yang digunakan meru paramagnetik.						merup	
,	Permeabilitas Vakum	1.25664E-06														
h	konversi	273			Keteran	gan :										
8	beda suhu	20			N	: Banyak p	artikel per	volume		- - -	1 2					
					kn	: Konstant	a Boltzman	1/3		$\mu_0 \Lambda$	p_m^2					
	Suhu	Suhu Kelvin	Suseptibilitas 1	Suseptibilitas 2.	T	1 Suhu			$\chi =$							
	0	273	267,8673186	150,6753667	μ_0	: Permeab	litas Vaku	m		3k	31					
	20	293	249,58286	140,3903588	p_m^i	1 Momen I	Npol									
	20 40	293 313	249,58286 233,6350734	140.3903588 131,4197288	p_m^i	1 Momen I	Nipol									
	20 40 60	293 313 333	249,58286 233,6350734 219,6029369	140.3903588 131,4197288 123,526652	p_m^i	: Momen (Dipol									
	20 40 60 80	293 313 333 353	249,58286 233,6350734 219,6029369 207,1608441	140.3903588 131.4197288 123.526652 116.5279748	p_m^i	1 Momen (Dipol									
	20 40 60 80 100	293 313 333 353 378	249,58286 233,6350734 219,6029369 207,1608441 196,0530241	140.3903588 131,4197288 123,526652 116,5279748 110,279826	P _m ⁱ	: Momen I	Npol									
	20 40 60 80 100 120	293 313 333 353 378 393	249,58286 233,6350734 219,6029369 207,1608441 196,0530241 186,0757709	140.3903588 131,4197288 123,526652 116,5279748 110,279826 104,6676212	P _m ²	: Momen i	Npol									
	20 40 60 100 120 140	293 313 333 353 373 393 413	249,58286 233,6350734 219,6029369 207,1608441 196,0530241 186,0757709 177,0648377	140.3903588 131,4197288 123,526652 116,5279748 110,279826 104,6676212 99,59897122	<i>P</i> ² _m	: Momen i	Nipol									
	20 40 60 100 120 140	293 313 353 353 373 393 413	249,58286 233,6350734 219,6029369 207,1608441 196,0530241 186,0757709 177,0648377	140.3903588 131,4197288 123,526652 116,5279748 110,279826 104,6676212 99,59897122	<i>P</i> ² _m	: Momen (Dipol		(4)							

Fig 3 Determining the material 2 dipole moment value

Fig 4 Determine the value of stable temperature (T)

Fig 5 Includes Boltzmann's constant value (k_B)

						- Partice	and the second second	and a							Rio Da				
	le Hone hust																		
PAL -	ter Store Car Ba Cepy - Ba Ciphosed 15	libs + 11 I Q + ⊞ + . Fert	$ \mathbf{x} \cdot \mathbf{x} = =$ $ \mathbf{x} \cdot \mathbf{x} = =$ $ \mathbf{x} \cdot \mathbf{x} $	「日本」を そ・ た 日本」を Algement	Wap Text Merge & C	Genter - 🤤	neal - % + Number	11.47 0	Condit Format	ing - Tab String - Tab	atas Cel le: Shjier	inset	Delete fo	enat ·	∑ AutoSu Fill +	m * Ay Soft Filte Editing	& Find &		
83		J 61*91	()*10~7																
X	A	8	с	D	ε	F	6	H	65 (L)	3	1	ĸ	1 1		M	N	0		Ϋ́.
1	Partikel per volume	6,023E+23									Dana Mara		del terr			Labor			
2	Momen Dipol	2E-18	1,58-18							ouseptio	ilitas Mag	namp	uan suati	u banan	magne	t untu	K OIT		
3	Suhu	20)	rang dite	itibilt	as magni	et. Berd	asarka	n suse	ıptibi			
4	konstanta Boltzmann	1.38E-23	_						-	magnet, dikarenakan x > 0 maka bi paramagnetik.					in magnet	tik yang	diguna	kan m	erup
5	Permeabilitas Vakum	1,25664E-06																	
5 6	Permeabilitas Vakum konversi	1,25664E-06 273	3		Keteran	gan :													
5 6 7	Permeabilitas Vakum konversi beda suhu	1,25664E-06 273 20	3		Keteran	gan : : Banyak	partikel pe	r volum				12							
5 6 7 8	Permeabilitas Vakum konversi beda suhu	1,25664E-06 273 20	4		Keteran N kB	gan : : Banyak : Konstar	partikel pe na Boltzma	r volum	•	1	$\mu_0 N$	$V p_n^2$							
56789	Permeabilitas Vakum konversi beda suhu Suhu	1,25664E-06 273 20 Suhu Kelvin	Suseptibilitas 1	Suseptibilitas 2	Keteran N k _B T	gan : : Benyak : Kenstar : Suhu	partikel pe nta Boltzma	r volum inn	•	χ =	$\frac{\mu_0 N}{2L}$	$V p_n^2$	1						
5 6 7 8 9 10	Permeabilitas Vakum konversi beda suhu Suhu 0	1,25664E-06 273 20 Suhu Kelvin 273	Suseptibilitas 1 267,8673186	Suseptibilitas 2 150,6753667	Keteran N $k_{\rm B}$ T μ_0	gan : : Banyak : Konstar : Suhu : Permea	partikel pe ita Boltzma bilitas Vak	r volum inn um	e	χ =	$=\frac{\mu_0 N}{3k_1}$	$V p_n^2$ BT	1						
5 6 7 8 9 10	Permeabilitas Vakum koriversi beda suhu Suhu 0 20	1,25664E-06 273 20 Suhu Kelvin 273 293	Suseptibilitas 1 267,8673186 249,58286	Suseptibilitas 2 150,6753667 140,3903588	Keteran N $k_{\rm B}$ T μ_0 p_m^2	gan : : Banyak : Konstar : Suhu : Permea : Momer	partikel pe nta Boltzma bilitas Vak i Dipol	r volum inn um	•	χ =	$=\frac{\mu_0 N}{3k_1}$	$V p_n^2$ B T	<u>.</u>						
5 6 7 8 9 10 11 12	Permeabilitas Vakum konversi beda suhu Suhu 0 20 40	1,25664E-06 273 20 Suhu Kelvin 273 293 315	Suseptibilitas 1 267,8673186 249,58286 233,6350734	Suseptibilitas 2 150,6753667 140,3903588 131,4197288	Keteran N $k_{\rm B}$ T μ_0 p_m^2	gan : : Banyak : Konsta : Suhu : Permea : Momen	partikel pe nta Boltzma bilitas Vak i Dipol	r volum inn um	•	χ =	$=\frac{\mu_0 N}{3k_1}$	$V p_n^2$ B T	1						
5 6 7 8 9 10 11 12 13	Permeabilitas Vakum konversi beda suhu Suhu 0 20 40 60	1,25664E-06 273 20 Suhu Kelvin 273 293 315 338	Suseptibilitas 1 267,8673186 249,58286 233,6350734 219,6029369	Suseptibilitas 2 150,6753667 140,3903588 131,4197288 123,526652	Keteran N $k_{\rm B}$ T μ_0 p_m^2	gan : : Bonyak : Konstar : Suhu : Permea : Momen	partikel pe nta Boltzma bilitas Vak Dipol	er volume ens	e	χ =	$=\frac{\mu_0 N}{3k_1}$	$\frac{V p_n^2}{B T}$	1						
5 6 7 8 9 10 11 12 13 14	Permeabilitas Vakum konversi beda suhu Suhu 0 20 40 40 60 80	1,25664E-06 273 20 5uhu Kelvin 273 293 313 333 353	Suseptibilitas 1 267,8673185 249,58286 233,6350734 219,6029369 207,1608441	Suseptibilitas 2 150,6753667 140,3903588 131,4197288 123,526652 116,5279748	Keteran N $k_{\rm B}$ T μ_0 $p_{\rm m}^2$	gan : : Banyak : Konstar : Suhu : Permea : Momen	partikel pe na Boltzma bilitas Vak Dipol	er volume enns um	•	x =	$=\frac{\mu_0 N}{3k_1}$	$V p_n^2$ B T	1						
5 6 7 8 9 10 11 12 13 14 15	Permeabilitas Vakum konversi beda suhu Suhu 0 20 40 60 80 100	1,25664E-06 273 20 Suhu Kelvin 273 293 313 333 333 353 353	Susseptibilitas 1 267,8673186 249,58286 233,6350734 219,6029369 207,1608441 196,0530241	Sosteptibilitas 2 150,6753667 140,3903588 131,4197288 123,526652 116,5279748 110,279826	Keterary N $k_{\rm B}$ T μ_0 p_m^2	gan : : Banyak : Konstar : Suhu : Permea : Momen	partikėl pe nta Boltzmi bilitas Vak i Dipol	ir volumi ins um	e	χ =	$=\frac{\mu_0 N}{3k_1}$	$\frac{V p_n^2}{BT}$	1						
5 6 7 8 9 10 11 12 13 14 15 16	Permeabilitas Vakum konversi beda suhu 0 20 40 40 60 80 100 120	1,25664E-06 273 20 Suhu Kelvin 273 293 315 333 353 353 353 353 353	Sinseptibilitas 1 267,8673186 249,58286 233,6330734 219,6029369 207,1608441 196,0530241 186,0757709	Suseptibilitas 2 150,6753667 140,3903588 131,4197288 133,526652 116,5279748 110,279826 104,6676212	Keterary N $k_{\rm B}$ T μ_0 p_m^2	gan : : Banyak : Konstar : Suhu : Permea : Momen	partikel pe nta Boltzma bilitas Vak Dipol	er volume ens	e	χ =	$=\frac{\mu_0 N}{3k_1}$	$V p_n^2$ BT	1						
5 6 7 8 9 10 11 12 13 14 15 16 17	Permeabilitas Vakum konversi beda suhu 5uhu 0 20 40 60 80 100 120 120 120	1,25664E-06 273 20 Sohu Kelvin 273 315 333 353 373 393 443	Suseptibilitias 1 267,8673186 249,58286 233,6536734 219,6029369 207,1608441 196,0530241 196,0530241 196,0557709 177,0648377	Susteptibilitas 2 150,6753667 140,3903588 131,4197288 123,526652 116,5279748 100,4676212 99,59897122	Keteran N $k_{\rm B}$ T μ_0 p_m^2	gan : : Banyak : Konstar : Suhu : Permea : Momen	partikel pe ita Boltzmu bilitas Vak Dipol	er volume ens	e	χ =	$=\frac{\mu_0 N}{3k_1}$	$V p_n^2$ BT	1						
5 6 7 8 9 10 11 12 13 14 15 16 17	Permeabilitas Vakum konversi beda suhu Suhu 0 20 40 60 80 100 120 120 140 54eet1	1,25664E-06 273 20 Suhu Kelvin 273 293 315 333 353 373 393 413	Suseptibilitas 1 267,8673186 29,5826 233,655673 219,6029369 207,1608441 196,0550241 186,075740 177,0648377	Sorregtibilitas 2 150,6753667 140,903588 131,4197288 132,526652 116,5279748 110,279826 104,6676212 99,50897122	Keteran N $k_{\rm B}$ T μ_0 p_m^2	gan : : Benyak : Konstar : Suhu : Permea : Momen	partikel pe na Boltzma bilitas Vak Dipol	ir volumi inn um	e	χ =	$=\frac{\mu_0 N}{3k_1}$	$\frac{V p_n^2}{BT}$	1						

Fig 6 Determine vacuum permeability (µ₀)

	8 5 0 +												ReDer			
	ile Home Inset															
1 . C.	Cut Cat Capy - B ≪ Format Painter Choboard S	nas + 11 I y + ⊡ + Fort	$=$ $\begin{bmatrix} x & x \\ -x & -x \end{bmatrix}$ $\equiv = \begin{bmatrix} -x & x \\ -x & -x \end{bmatrix}$ $= \begin{bmatrix} -x & -x \\ -x & -x \end{bmatrix}$	iiii iii iii iiiiiiiiiiiiiiiiiiiiiiii	Wwy: Text Merge & G	Center + 😨	eral • % + Number	- 11 II N	onditional conditional conditiong - 1	format as Table * tyles	Cell Inset	Delete Form	T AutoSur ■ Fill + # Clear+	Sort &	Find & Select -	~
80	• • •	√ fr 273														^
.,	A 1	8	c	D	1	E.	G	н	1.1		J K	1	M	N	0	P =
1	Partikel per volume	6.023E+23							-							
2	Momen Dipol	26-18	1,58-18						Suse	otibilitas	s Magnet ad	alah kema	npuan suatu	bahan n	nagnet un	tuk dim
3	Suhu	20							yang	ditentul	kan oleh nila	i suseptiti	siltas magne	. Berda	sarkan su	septibil
4	konstanta Boltzmann	1,38E-23							magn parar	et, dika nagneti	renakan x> k.	0 maka ba	ihan magneti	k yang d	digunakan	merupa
2	Permeabilitar Value	1 256648-06														
6	konversi	273	-		Keteran	ran :										
7	beda sutu	20	1		N	: Barryak	artikel pe	volume								
8					ku	: Konstan	a Boltzma	00		ŀ	$\iota_0 N p_n^*$					
9	Suhu	Suhu Kelvin	Suseptibilitas 1	Suseptibilitas 2	T	: Suha			X	= -		<u>.</u>				
10	0	273	267,8673186	150,6753667	μ_0	: Permeat	ilitas Vak	m			$3k_{\rm B}T$					
11	20	293	249,58286	140,3903588	p_{α}^2	: Momen	Dipol									
12	40	313	233,6350734	131,4197288												
13	60	333	219,6029369	123,526652												
14	80	353	207,1608441	116,5279748												
15	100	373	196,0530241	110,279826												
16	120	393	186,0757709	104,6676212												
17	140	413	177,0648377	99,59897122												
	Sheet1	(f)														
Rea	4 話												(唐) 页	巴	- 1	+ 110%

Fig 7 Specifies the temperature conversion to Kelvin

To see the tendency of the graph of the magnetic susceptibility value with temperature (Figure 11), it is determined starting from 0° Celcius temperature to 2920° Celcius with a difference in temperature rise of 20°. Then converted to Kelvin temperature.

	1 5×0×4					simula	ni jani(3) + I	lacel			fin a	19	Rio Dar	na 20	100	a i	×
	e Harne Inset																6
Pad Pad	K Cut. Cal Ba Copy - H ≪ Format Painter	11 + → 11 1 및 + □ +	$\cdot \mathbf{x} \cdot \mathbf{x} \rangle \equiv \equiv$ $\Delta \cdot \Delta \cdot \equiv \equiv$	₩ 0- 6 = 111 (1	Wrap Text Marge & I	Center - 😵	ent + 76 + 1	- %1_22Co	millional For	matas Cell ble- Styles	inter 1	Delete Format	∑ AutoSur ∰ Fitt - ∲ Clear •	Sort &	P Find & Select +		
	Clipboard 15	Tark	6	Alignment		- 6	Number	- 14	Style	i		Cells		toting			1
87	* ×																
12	1 1 1		C.	D	F	1.6	6	н	1.1	1.14	1	1. 17		N	0	P	
1	Partikel per volume	6.023E+23		1250	-												
2	Momen Dipol	2E-18	1.5E-18						Susepti	bilitas Ma	gnet adai	ah kemam	puan suatu	bahan n	nagnet un	tuk din	6
3	Suhu	20							vang dit	entukan	oleh nilai	suseptitibi	Itas magne	t. Berda	sarkan su	septibi	£
4	konstanta Boltzmann	1,386-23							magnet parama	. dikarena gnetik.	ikan x > C	l maka bah	ian magnet	ik yang d	ligunakan	merup	ł
5	Permeabilitas Vakum	1,25664E-06															
6	konversi	273			Keterar	gan :											
7	beda suhu	20			N	: Barryak p	nartikel pe	r volume		11 -	Mn2						
8					k _B	: Konstant	a Boltzma	inn		μ_0	w Pm						
9	Suhu	Suhu Kelsin	Suseptibilitas 1	Suseptibilitas 2	T	: Suhu			X =	21	T						
10	0	273	267,8673186	150,6753667	pio	: Permeab	išitas Vaki	um		31	BI						
11	20	293	249,58286	140,3903588	P _m	: Momen	Dipol										
12	40	513	233,6350734	131,4197288													
13	60	333	219,6029369	123,526652													
14	80	555	207,1608441	116,5279748													
10	100	3/3	196,0530241	110,279826													
17	120	393	177.0648377	204,6676212													
*	Sheet1	(A)	111,0040311	22,3292/ 464					I GT	-							
		(c)											limit on	an -			

Fig 9 In accordance with the equation specified for material 1

Fig 10 In accordance with the equation specified for material 2

Fig 11 OutputGraph of magnetic susceptibility value to temperature with two different magnetic materials.

CONCLUSION

Spreadsheets in Worksheet are helpful in understanding physics through graphs and simulations. Commands on the spreadsheets required for all of these activities are easy to implement. Especially in analyzing graph of magnetic susceptibility to temperature change. According to the data and graphs that have been discussed, the higher the temperature given the magnetic susceptibility value will decrease. Through the data and graph of the magnetic susceptibility value to temperature also, it can be known that the material used in the magnet can affect also, but the graph described is the same.

How to cite this article:

Rio Sandhika Darma et al (2018) 'Magnetic Susceptibility Analysis Using Worksheet', International Journal of Current Advanced Research, 07(6), pp. 13210-13212. DOI: http://dx.doi.org/10.24327/ijcar.2018.13212.2344

References

- 1. El-Gebeily, M and Yushau, B (2007) "Curve Graphing in MS Excel and Applications," Spreadsheets in Education (eJSiE): Vol. 2: Iss. 2, Article 6. Available at: http://epublications.bond.edu.au/ejsie/vol2/iss2/6
- 2. Mitchell, S. Brian.2004. An Introduction Materials Engineering and Science. Canada: John Wiley & Sons, Inc
- Telford, W.M., Goldrat, L.P., dan Sheriff, R.P., 1990, Applied Geophysics 2nd ed, Cambridge University Pres, Cambridge
- Uddin, Z. Ahsanuddin, M. Khan, A Danish. 2017. Teaching Physics Using Microsoft Excel. IOPScience. http://doi.org/10.1088/1361-6552/aa7919
- 5. Wischniewsky, Wilfried A.L. (2008) "Movie-like Animation with Excel's Single Step Iteration Exemplified by Lissajous Figures," Spreadsheets in Education (eJSiE): Vol. 3: Iss. 1, Article 4. Available at :http://epublications.bond.edu.au/ejsie/vol3/iss1/4