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INTRODUCTION 
 

Graph theory has numerous applications to 
computer science, electrical engineering, operations research, 
economics, networking routing, transportation, etc. Formally, 
agraph (or a crisp graph) is defined as a pair,
consisting of a non-empty finite set � of elements called 
vertices and a finite set � of pairs of vertices called 
1965, L. A. Zadeh[8] introduced the notion of fuzzy set :“A 
fuzzy set� on a set � is characterized by a mapping 
[0, 1], which is called the membership function and fuzzy set 
on � is denoted by � = {(�,�	(�)) ∶ 	�	
Rosenfeld [4] introduced the notion of fuzzy graph as : “ A 
fuzzy graph��= (�,�, �) consists of a non-empty set 
with a pair of functions  �	: � → [0, 1] and �
such that for all �, � ∈ �, �(�, �) ≤ ���	{�
�(�) and �(�, �) represent the membership values of the vertex 
and of the edge (�, �) in��respectively”. He also proposed 
definitions of paths, cycles, connectedness, etc. Zadeh[9] also 
introduced the notion of interval valued fuzzy sets
fuzzy sets, in which the values of the membership degree are intervals 
of numbers instead of fixed numbers. In 2009, Hongmei 

Lianhua [2] defined interval valued fuzzy graphs
Akram and Dudek [1] defined some operations on them. 
Talebi and Rashmanlou[7] studied properties of isomorphism 
and complement on intervalvalued fuzzy graphs. [5]and
some recent works in this area. 
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                             A B S T R A C T  
 

 

Complement of an IntervalValued Fuzzy Graph (IVFG) was defined byTalebi and 
Rashmanlou [7]. We observed that their definition fails in some cases
the notion of complement in such a way that it applies to all IVFG's. We also introduce
the concepts of Classic and Non-classic IVFG's, and Perfect and Imperfect edges of an 
IVFG and state some theorems regarding these concepts.
 
 
 
 
 
 
 

Graph theory has numerous applications to problems in 
computer science, electrical engineering, operations research, 
economics, networking routing, transportation, etc. Formally, 

) is defined as a pair,�∗ = 	 (�, �) 
of elements called 

of pairs of vertices called edges. In 
1965, L. A. Zadeh[8] introduced the notion of fuzzy set :“A 

is characterized by a mapping �	: � → 
[0, 1], which is called the membership function and fuzzy set � 

	 ∈ 	�}”. In 1975, 
Rosenfeld [4] introduced the notion of fuzzy graph as : “ A 

empty set � together 
� : � × � → [0, 1] 
�(�), �(�)}. Here 

represent the membership values of the vertex � 
”. He also proposed 

definitions of paths, cycles, connectedness, etc. Zadeh[9] also 
interval valued fuzzy sets, as an extension of 

, in which the values of the membership degree are intervals 
umbers. In 2009, Hongmei and 

interval valued fuzzy graphs and in 2011, 
Akram and Dudek [1] defined some operations on them. 
Talebi and Rashmanlou[7] studied properties of isomorphism 
and complement on intervalvalued fuzzy graphs. [5]and[6] are 

We observe that the definition of complement of an IVFG 
given by Talebi and Rashmanlou fails in some cases. 
modified the definition in such a way that it applies to all 
IVFG’s. The new definition gives the same complement for 
IVFG’s where the former definition applies. These 
observations motivated the notions of classic and non
IVFG’s and perfect and imperfect edges. 
 

Some Basic Concepts 
 

In the following discussion, for any given set
the power set of X. That is, the collection of all subsets of
 

Definition[9]. An interval valued fuzzy set
characterized by an interval-
such that �(x) = [��

�, ��
�] where 0 

�Î	�, �(x) is called the interval number
is denoted by � = {(x, � (x)) : x 
 

Definition[2]. An interval valued fuzzy graph
(�,�, �) consists of a non-empty set 
interval valued functions � :�
where 
�(�) = [��

� , ��
�], 0	 ≤ ��

� ≤ �
and�(��) = [���

�  , ���
� ], 0	 ≤ �

represent the interval number of 
�� in	� respectively satisfying
���
� ≤ 	min	{��

�, ��
�}and���

� ≤
for all �, � ∈ �. 
 

Definition[3]. Let 	�	= (�,�,
IVFG’s. Then �	and �� are said to be 
�	 ≅ 	��, if there exist a bijection 
 

1. ��
� = ��(�)

�	�  , ��
� = 	��(�)

�	�
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of an IntervalValued Fuzzy Graph (IVFG) was defined byTalebi and 
Rashmanlou [7]. We observed that their definition fails in some cases and we reformulated 
the notion of complement in such a way that it applies to all IVFG's. We also introduced 

classic IVFG's, and Perfect and Imperfect edges of an 
some theorems regarding these concepts. 

observe that the definition of complement of an IVFG 
given by Talebi and Rashmanlou fails in some cases. We 

the definition in such a way that it applies to all 
IVFG’s. The new definition gives the same complement for 
IVFG’s where the former definition applies. These 
observations motivated the notions of classic and non-classic 

fect edges.  

In the following discussion, for any given set�,	�(�)denotes 
of X. That is, the collection of all subsets of�. 

interval valued fuzzy set(IVFS)� on � is 
-valued function�	:	� → 	�[0,1] 

] where 0 ≤ ��
� ≤ ��

� ≤ 1. For each 
interval numberof x. An IVFS � on � 
(x)) : x ∈ �}. 

interval valued fuzzy graph (IVFG)�	= 
empty set � together with a pair of 

→ [0, 1] and � : � × � → [0, 1] 

��
� 	≤ 1 
���
� 	≤ ���

� 	≤ 1 
represent the interval number of the vertex � and of the edge 

respectively satisfying 
≤ 	min	{��

�, ��
�} 

�) and ��= (��,��, ��) be two 
are said to be isomorphic, written as 

if there exist a bijection 	ℎ ∶ 	�	 → 	�� such that  

( ) for every vertex � ∈ �. 
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2. ���
� = ��(�)�(�)

�		�   , ���
� = 	��(�)�(�)

�		�  for every ed

�. 
 

Definition[7].   The complement of IVFG	�
IVFG �̅= (�,�, �̅) where �̅(��) =	[�̅��

		� , �̅��
		�

�̅��
		� = min{��

�, ��
�} − ���

� 	, �̅��
		� = min

for every	�, � ∈ �. 
 

Example 
 

Figure I An example for complement of an IVFG.
 

In the following example, we show that the construction of 
complements, in the above sense, fails for some IVFG’s.
 

Example 
 

Figure ii An example of an IVFG where the construction of complement fails.
 

Here,[�̅��
	� ,�̅��

	� ] = [0.099,0], which is not an interval. So we 
cannot construct an IVFG �̅  
The definition of complement stated below applies to all 
IVFG’s.  
 

Definition.The complement of IVFG	�	= (�
�̅= (�,�, �̅) where �̅(��) =	[�̅��

		� , �̅��
		� ] 

 

 

for all �, � ∈ �. 
 

 
Now, using this definition., we can draw 
above graph, which is given as the next example.
 

Example 
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for every edge�� in 

	= (�,�, �) is an 

��] where 
min{��

�, ��
�} − ���

�  

 
example for complement of an IVFG. 

In the following example, we show that the construction of 
complements, in the above sense, fails for some IVFG’s. 

 
An example of an IVFG where the construction of complement fails. 

= [0.099,0], which is not an interval. So we 

applies to all 

�,�, �) is an IVFG 

 

, we can draw complement, of 
which is given as the next example. 

 

Figure iii An example of complement of IVFG.
 

Classic and Non-Classic IVFG’
 

Definition.  An IVFG �	= (�,�
all its edges satisfy the condition

	min{��
�, ��

�} − ���
� ≤

Otherwise we call it as a non-classic IVFG.
 

Definition. Let �	= (�,�, �) be an IVFG. Then edges 
satisfying  
	min{��

�, ��
�} − ���

� ≤ min{��
�

are called perfect edges and all other edges 
	min{��

�, ��
�} − ���

� >
are called imperfect edges. 
 

Remark 
 

1. All edges of an IVFG are perfect iffthe IVFG is 
classic. 

2. If edge �� is an imperfect edge, then 
always a real number in [0,1).
 

We now state some theorems on classic
 

Theorem: For any IVFG � = (
 

Theorem. Let � and � be any two IVFGs such that 
Then any isomorphism ℎ: �	
perfect edges and imperfect edges to imperfect edges.
 

Theorem.Let �	= (�,�, �) be any IVFG. Then 

�̅̅ ≅ �. 
 

Proof.Suppose � is classic. We shall prove that the identity 
 

Definition[7].An IVFG � is said to be 
� ≅ �̅. 
 

Example 

Figure iv An example of a self
 

Theorem.   �is a self – complementary IVFG 
IVFG. 
 

Proof. �is a self – complementary IVFG
We already stated that �̅ is always classic
⇒all edges of �̅ are perfect. 

1956, May 2018 

 
 

An example of complement of IVFG. 

IVFG’s 

�, �)is called a classic IVFG if 
all its edges satisfy the condition 

≤ min{��
�, ��

�} − ���
� . 

classic IVFG. 

) be an IVFG. Then edges �� in � 

{ �
�, ��

�} − ���
�  

and all other edges �� for which 
> min{��

�, ��
�} − ���

�  

All edges of an IVFG are perfect iffthe IVFG is 

is an imperfect edge, then �̅(��) is 
always a real number in [0,1). 

We now state some theorems on classic IVFG’s 

(�, �, �), �̅ is always classic. 

be any two IVFGs such that �	 ≅ �. 
	 → � maps perfect edges to 

perfect edges and imperfect edges to imperfect edges. 

) be any IVFG. Then � is classic iff 

. We shall prove that the identity  

is said to be self - complementaryif 

 

 
An example of a self-complementary IVFG. 

complementary IVFG ⇒ � is a classic 

complementary IVFG⇒ � ≅ �̅.  
is always classic 

  (1) 
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We also know that any isomorphism maps perfect edges to 
perfect edges.    (2) 
Since � ≅ �̅,	from (1) and (2), it is clear that, all edges of � 
are perfect. 
⇒ �is classic ∎ 
 

Remark.   The IVFG in figure(i) is classic. But it is not self-
complementary. Hence converse of theorem above is not true. 
 

CONCLUSION 
 

We observed that the definition of complement of an IVFG 
given by Talebi and Rashmanlou fails in some cases. We 
modified the definition in such a way that it applies to all 
IVFG’s. The new definition gives the same complement for 
IVFG’s where the former definition applies. These 
observations motivated the notions of classic and non-classic 
IVFG’s and perfect and imperfect edges. We also stated some 
theorems regarding this and prove that an IVFG is self-
complementary implies G is classic, but the converse is not 
true. 
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