# **International Journal of Current Advanced Research**

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614 Available Online at www.journalijcar.org Volume 7; Issue 5(K); May 2018; Page No. 12954-12956 DOI: http://dx.doi.org/10.24327/ijcar.2018.12956.2296



# **ON COMPLEMENT OF INTERVAL VALUED FUZZY GRAPHS**

## Deepthi Mary Tresa S., Divya Mary Daise S and Shery Fernandez\*

St. Alberts College, Ernakulam - 682018, Kerala, India.

| A R T I C L E I N F O | A B S T R A C T |
|-----------------------|-----------------|
|                       |                 |

### Article History:

Received 10<sup>th</sup> February, 2018 Received in revised form 6<sup>th</sup> March, 2018 Accepted 24<sup>th</sup> April, 2018 Published online 28<sup>th</sup> May, 2018

### Key words:

Interval Valued Fuzzy Graph (IVFG), complement of IVFG, classic IVFG, non-classic IVFG, self-complementary IVFG, perfect edge, imperfect edge. Complement of an IntervalValued Fuzzy Graph (IVFG) was defined byTalebi and Rashmanlou [7]. We observed that their definition fails in some cases and we reformulated the notion of complement in such a way that it applies to all IVFG's. We also introduced the concepts of Classic and Non-classic IVFG's, and Perfect and Imperfect edges of an IVFG and state some theorems regarding these concepts.

Copyright©2018 **Deepthi Mary Tresa S et al.** This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

# INTRODUCTION

Graph theory has numerous applications to problems in computer science, electrical engineering, operations research, economics, networking routing, transportation, etc. Formally, agraph (or a crisp graph) is defined as a pair,  $G^* = (V, E)$ consisting of a non-empty finite set V of elements called vertices and a finite set E of pairs of vertices called edges. In 1965, L. A. Zadeh[8] introduced the notion of fuzzy set :"A *fuzzy setA* on a set X is characterized by a mapping  $\mathfrak{M}: X \rightarrow \mathfrak{M}$ [0, 1], which is called the membership function and fuzzy set A on X is denoted by  $A = \{(x, \mathfrak{M}(x)) : x \in X\}^n$ . In 1975, Rosenfeld [4] introduced the notion of fuzzy graph as : " A fuzzy graph  $G_F = (V, \sigma, \mu)$  consists of a non-empty set V together with a pair of functions  $\sigma: V \to [0, 1]$  and  $\mu: V \times V \to [0, 1]$ such that for all  $A, B \in V$ ,  $\mu(A, B) \leq \min \{\sigma(A), \sigma(B)\}$ . Here  $\sigma(A)$  and  $\mu(A, B)$  represent the membership values of the vertex A and of the edge (A, B) in  $G_F$  respectively". He also proposed definitions of paths, cycles, connectedness, etc. Zadeh[9] also introduced the notion of interval valued fuzzy sets, as an extension of *fuzzy sets*, in which the values of the membership degree are intervals of numbers instead of fixed numbers. In 2009, Hongmei and Lianhua [2] defined interval valued fuzzy graphs and in 2011, Akram and Dudek [1] defined some operations on them. Talebi and Rashmanlou<sup>[7]</sup> studied properties of isomorphism and complement on intervalvalued fuzzy graphs. [5]and[6] are some recent works in this area.

\*Corresponding author: Shery Fernandez

We observe that the definition of complement of an IVFG given by Talebi and Rashmanlou fails in some cases. We modified the definition in such a way that it applies to all IVFG's. The new definition gives the same complement for IVFG's where the former definition applies. These observations motivated the notions of classic and non-classic IVFG's and perfect and imperfect edges.

### Some Basic Concepts

1

In the following discussion, for any given set X,  $\mathcal{P}(X)$  denotes the *power set* of X. That is, the collection of all subsets of X.

**Definition[9].** An *interval valued fuzzy set(IVFS)A* on X is characterized by an interval-valued function  $i: X \to \mathcal{P}[0,1]$  such that  $i(x) = [a_x^-, a_x^+]$  where  $0 \le a_x^- \le a_x^+ \le 1$ . For each  $x \in X$ , i(x) is called the *interval number* of x. An IVFS A on X is denoted by  $A = \{(x, i(x)) : x \in X\}$ .

**Definition[2].** An *interval valued fuzzy graph*  $(IVFG)G = (V, \sigma, \mu)$  consists of a non-empty set V together with a pair of interval valued functions  $\sigma : V \to [0, 1]$  and  $\mu : V \times V \to [0, 1]$  where

 $\sigma(A) = [\sigma_A^-, \sigma_A^+], 0 \le \sigma_A^- \le \sigma_A^+ \le 1$ 

and $\mu(AB) = [\mu_{AB}^{-}, \mu_{AB}^{+}], 0 \le \mu_{AB}^{-} \le \mu_{AB}^{+} \le 1$ 

represent the interval number of the vertex *A* and of the edge *AB* in *G* respectively satisfying

 $\mu_{AB}^- \leq \min\{\sigma_A^-, \sigma_B^-\}$  and  $\mu_{AB}^+ \leq \min\{\sigma_A^+, \sigma_B^+\}$  for all  $A, B \in V$ .

**Definition[3].** Let  $G = (V, \sigma, \mu)$  and  $G' = (V', \sigma', \mu')$  be two IVFG's. Then *G* and *G'* are said to be *isomorphic*, written as  $G \cong G'$ , if there exist a bijection  $h: V \to V'$  such that

. 
$$\sigma_A^- = \sigma_{h(A)}'^-$$
,  $\sigma_A^+ = \sigma_{h(A)}'^+$  for every vertex  $A \in V$ .

St. Alberts College, Ernakulam - 682018, Kerala, India.

2.  $\mu_{AB}^- = \mu_{h(A)h(B)}^{\prime -}$ ,  $\mu_{AB}^+ = \mu_{h(A)h(B)}^{\prime +}$  for every edge*AB* in *G*.

**Definition[7].** The *complement of IVFG*  $G = (V, \sigma, \mu)$  is an IVFG  $\overline{G} = (V, \sigma, \overline{\mu})$  where  $\overline{\mu}(AB) = [\overline{\mu}_{AB}, \overline{\mu}_{AB}^+]$  where  $\overline{\mu}_{AB} = \min\{\sigma_A^-, \sigma_B^-\} - \mu_{AB}^-, \quad \overline{\mu}_{AB}^+ = \min\{\sigma_A^+, \sigma_B^+\} - \mu_{AB}^+$  for every  $A, B \in V$ .

#### Example



In the following example, we show that the construction of complements, in the above sense, fails for some IVFG's.

### Example



Figure ii An example of an IVFG where the construction of complement fails.

Here, $[\bar{\mu}_{AB}, \bar{\mu}_{AB}^+] = [0.099, 0]$ , which is not an interval. So we cannot construct an IVFG  $\bar{G}$ 

The definition of complement stated below applies to all IVFG's.

**Definition.** The *complement of IVFG*  $G = (V, \sigma, \mu)$  is an IVFG  $\bar{G} = (V, \sigma, \bar{\mu})$  where  $\bar{\mu}(AB) = [\bar{\mu}_{AB}, \bar{\mu}_{AB}^+]$ 

 $= \begin{cases} [\min\{\sigma_{A}^{-}, \sigma_{B}^{-}\} - \mu_{AB}^{-}, \min\{\sigma_{A}^{+}, \sigma_{B}^{+}\} - \mu_{AB}^{+}], if \quad \min\{\sigma_{A}^{-}, \sigma_{B}^{-}\} - \mu_{AB}^{-} \leq \min\{\sigma_{A}^{+}, \sigma_{B}^{+}\} - \mu_{AB}^{+} \\ [\min\{\sigma_{A}^{-}, \sigma_{B}^{-}\} - \mu_{AB}^{-}, \min\{\sigma_{A}^{-}, \sigma_{B}^{+}\} - \mu_{AB}^{+}], if \quad \min\{\sigma_{A}^{-}, \sigma_{B}^{-}\} - \mu_{AB}^{-} > \min\{\sigma_{A}^{-}, \sigma_{B}^{+}\} - \mu_{AB}^{+} \end{cases}$ 

for all  $A, B \in V$ .

Now, using this *definition*., we can draw complement, of above graph, which is given as the next example.

#### Example





#### Figure iii An example of complement of IVFG.

#### Classic and Non-Classic IVFG's

**Definition.** An IVFG  $G = (V, \sigma, \mu)$  is called a classic IVFG if all its edges satisfy the condition

 $\min\{\sigma_A^-, \sigma_B^-\} - \mu_{AB}^- \le \min\{\sigma_A^+, \sigma_B^+\} - \mu_{AB}^+.$ Otherwise we call it as a *non-classic IVFG*.

**Definition.** Let  $G = (V, \sigma, \mu)$  be an IVFG. Then edges AB in G satisfying

 $\min\{\sigma_A^-, \sigma_B^-\} - \mu_{AB}^- \le \min\{\sigma_A^+, \sigma_B^+\} - \mu_{AB}^+$ 

are called *perfect edges* and all other edges *AB* for which  $\min\{\sigma_A^-, \sigma_B^-\} - \mu_{AB}^- > \min\{\sigma_A^+, \sigma_B^+\} - \mu_{AB}^+$ 

are called *imperfect edges*.

### Remark

- 1. All edges of an IVFG are perfect iffthe IVFG is classic.
- 2. If edge AB is an imperfect edge, then  $\overline{\mu}(AB)$  is always a real number in [0,1).

We now state some theorems on classic IVFG's

**Theorem:** For any IVFG  $G = (V, \sigma, \mu)$ ,  $\overline{G}$  is always classic.

**Theorem.** Let G and H be any two IVFGs such that  $G \cong H$ . Then any isomorphism  $h: G \to H$  maps perfect edges to perfect edges and imperfect edges to imperfect edges.

**Theorem.**Let  $G = (V, \sigma, \mu)$  be any IVFG. Then G is classic iff  $\overline{\overline{G}} \cong G$ .

**Proof.** Suppose G is classic. We shall prove that the identity

**Definition**[7]. An IVFG *G* is said to be *self* - *complementary* if  $G \cong \overline{G}$ .



**Theorem.** G is a self – complementary IVFG  $\Rightarrow$  G is a classic IVFG.

**Proof.** G is a self – complementary IVFG $\Rightarrow$   $G \cong \overline{G}$ . We already stated that  $\overline{G}$  is always classic  $\Rightarrow$ all edges of  $\overline{G}$  are perfect. (1) We also know that any isomorphism maps perfect edges to perfect edges. (2) Since  $G \cong \overline{G}$ , from (1) and (2), it is clear that, all edges of G

are perfect.  $\Rightarrow$  *G* is classic  $\blacksquare$ 

**Remark.** The IVFG in *figure(i)* is classic. But it is not self-complementary. Hence converse of *theorem* above is not true.

# CONCLUSION

We observed that the definition of complement of an IVFG given by Talebi and Rashmanlou fails in some cases. We modified the definition in such a way that it applies to all IVFG's. The new definition gives the same complement for IVFG's where the former definition applies. These observations motivated the notions of classic and non-classic IVFG's and perfect and imperfect edges. We also stated some theorems regarding this and prove that an IVFG is self-complementary implies G is classic, but the converse is not true.

## Acknowledgement

Part of the paper was presented and published in the International Conference on Science and Technology in Cochin University of Science and Technology (CUSAT) in April, 2018

# Reference

- 1. Akram, M. and Dudek, W.A., Interval valued fuzzy graphs. *Computers Math. Appl.*, Vol.61(2), 2011, 289-299.
- JuHongmei and Wang Lianhua, Interval-valued Fuzzy Subsemigroups and subgroups Associated by Intervalvalued Fuzzy Graphs, Global congress on Intelligent Systems, 2009, 484-487.
- 3. Rashmanlou and Madhumangal Pal, Some Properties of Highly Irregular Interval Valued Fuzzy Graphs, World Applied Sciences Journal, 2013, 1756-1773.
- 4. Rosenfeld, A., Fuzzy graphs, Fuzzy sets and their applications to cognitive and decision processes, 1975, 77-95.
- 5. Souriar Sebastian and Ann Mary Philip, On total regularity of the join of two interval valued fuzzy graphs, *International Journal of Scientific and Research Publications*, Vol.6(12), 2016, 45-55.
- 6. Souriar Sebastian and Ann Mary Philip, Regular and edge regular interval valued fuzzy graphs, *Journal of Comp. and Math. Sci.*, Vol.8(7), 2017, 309-322.
- 7. Talebi, A. A., and H. Rashmanlou., Isomorphism on interval-valued fuzzy graphs, Annals of Fuzzy Mathematics and Informatics, Vol.6(1), 2013, 47-58.
- 8. Zadeh L. A., Fuzzy sets, *Information and control*, Vol.8, 1965, 338-353.
- 9. Zadeh, L.A., The concept of a linguistic and application to approximate reasoning. *Information Sci.*, Vol.8(3), 1975, 199-249.

# How to cite this article:

Deepthi Mary Tresa S *et al* (2018) 'On Complement of Interval Valued Fuzzy Graphs', *International Journal of Current Advanced Research*, 07(5), pp. 12954-12956. DOI: http://dx.doi.org/10.24327/ijcar.2018.12956.2296

\*\*\*\*\*\*