

SERVERLESS ARCHITECTURE THE FUTURE OF COMPUTATION

Udith Shankar M

Information Science & Engineering Department

A R T I C L E I N F O

INTRODUCTION

Platform as a Service (PaaS) is a class of cloud computing
service that gives an opportunity enabling clients to create,
run, and oversee applications without the multifaceted nature
of building and keeping up the framework ordinarily
connected with creating and propelling an application

Figure 1 PaaS architecture

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319-6505,
Available Online at www.journalijcar.org
Volume 7; Issue 5(F); May 2018; Page No.
DOI: http://dx.doi.org/10.24327/ijcar.2018

Copyright©2018 Udith Shankar M and Vanishree K
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Corresponding author: Vanishree K
Information Science & Engineering Department, RV College
of Engineering Bengaluru, India

Article History:

Received 6th February, 2018
Received in revised form 20th
March, 2018 Accepted 8th April, 2018
Published online 28th May, 2018

Key words:

Serverless, microservices, AWS lambda, Azure,
google functions, PaaS, FaaS.

ARCHITECTURE THE FUTURE OF COMPUTATION

Udith Shankar M and Vanishree K*

Information Science & Engineering Department, RV College of Engineering Bengaluru,

 A B S T R A C T

Serverless is next evolution in cloud computing. It helps in development of application
without the worry of managing the server, hardware and software. The developer has to
deal with the business logic. They help run business logic as microservices. It provides high
availability virtually at any scale. By embracing serverless designs, clients can reconsider
their cutting edge products from ideation to creation, without sitting tight for, or stressing
over, framework. The benefits are noteworthy, producing efficiencies, bringing down
expenses, and accelerating time to market. In this paper we try to analyze how Serverless
architecture is an upgrade to PaaS (Platform as a Service), their economic impact on
application development and compare services available in the market such as AWS
lambda, Azure and google functions.

of cloud computing
service that gives an opportunity enabling clients to create,
run, and oversee applications without the multifaceted nature
of building and keeping up the framework ordinarily
connected with creating and propelling an application[6].

Platform as-a-Service streamlines the deployment procedure of
applications. It enables you to deploy your application and the
cloud stresses over how to deploy the servers to run it. Most
PaaS hosting options can even auto
servers to deal with workloads and spare you cash amid times
of low use. When deployed as PaaS, an application is typically
running on at least on the server at all times. In PaaS there is
an application thread always running and hand
requests. Serverless computing or FaaS totally overcomes the
shortcomings of PaaS model [11] [12]
to deploy a single function or part of an application and is
intended to possibly be a serverless design. It may not keep
running at all until the point that the function should be
executed. It starts the function inside a couple of milliseconds
and the close it down. The Serverless term is often
misunderstood to be there are no servers in background. It’s
not true. There are indeed servers behind the scenes but there
are no dedicated servers running all the time. Whenever an
event is triggered the function runs on servers and you pay
only for that computational time [13]

'Serverless' alludes to another age of stage platform
service offerings where the framework supplier assumes
liability for receiving customer requests and reacting to them,
capacity planning, and task scheduling and operational
monitoring. Developers need to worry just over the business
logic. This is a huge change from the application facilitating
platform as-a-service age of suppliers. As opposed to
ceaselessly running servers, we deploy 'functions' that work as
event handlers, and pay for CPU time when
are executing [3].

International Journal of Current Advanced Research
6505, Impact Factor: 6.614

www.journalijcar.org
; Page No. 12609-12612

//dx.doi.org/10.24327/ijcar.2018.12612.2223

Udith Shankar M and Vanishree K. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Information Science & Engineering Department, RV College

ARCHITECTURE THE FUTURE OF COMPUTATION

Bengaluru, India

computing. It helps in development of application
without the worry of managing the server, hardware and software. The developer has to
deal with the business logic. They help run business logic as microservices. It provides high

any scale. By embracing serverless designs, clients can reconsider
their cutting edge products from ideation to creation, without sitting tight for, or stressing
over, framework. The benefits are noteworthy, producing efficiencies, bringing down

and accelerating time to market. In this paper we try to analyze how Serverless
(Platform as a Service), their economic impact on

application development and compare services available in the market such as AWS

Service streamlines the deployment procedure of
applications. It enables you to deploy your application and the
cloud stresses over how to deploy the servers to run it. Most
PaaS hosting options can even auto-scale the quantity of
servers to deal with workloads and spare you cash amid times
of low use. When deployed as PaaS, an application is typically
running on at least on the server at all times. In PaaS there is
an application thread always running and handles many
requests. Serverless computing or FaaS totally overcomes the

model [11] [12]. FaaS gives the capacity
to deploy a single function or part of an application and is
intended to possibly be a serverless design. It may not keep

nning at all until the point that the function should be
executed. It starts the function inside a couple of milliseconds
and the close it down. The Serverless term is often
misunderstood to be there are no servers in background. It’s

ndeed servers behind the scenes but there
are no dedicated servers running all the time. Whenever an
event is triggered the function runs on servers and you pay

ime [13].

'Serverless' alludes to another age of stage platform-as-a-
service offerings where the framework supplier assumes
liability for receiving customer requests and reacting to them,
capacity planning, and task scheduling and operational
monitoring. Developers need to worry just over the business

uge change from the application facilitating
service age of suppliers. As opposed to

ceaselessly running servers, we deploy 'functions' that work as
event handlers, and pay for CPU time when these capacities

Research Article

This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Serverless Architecture The Future of Computation

Figure 2 Evolution of Serverless

LITERATURE SURVEY

Adam Eivey says in “Be Wary of the Economics of
“Serverless” Cloud Computing” that serverless has the
potential to be a great abstraction offering economic
advantages for simple workflows, but beware of throwing
everything into it too hastily. It means that cost is often
calculated on per hit basis. If your APIs are having broader
execution time or accessed frequently then buying a on
demand instance is quite cheap when compared to serverless.
So choosing serverless should be solely based on the nature of
the app.[1]

Gojko Adzic and Robert Chately in their paper “Serverless
Computing: Economic and Architectural Impact” says that
serverless platforms today are useful for important tasks,
where high-throughput is key, rather than very low latency,
and where individual requests can be completed in a relatively
short time window. The economics of hosting such tasks in a
serverless environment make it a compelling way to reduce
hosting costs significantly, and to speed up time to market for
delivery of new features. They take up case study of startups
such as Mindmup and Yubl and show how adopting serverless
has reduced their cost upto 66% to 95%. They shed light on
opportunities created by the serverless platform such
removing incentives for bundling and removing barriers to
versioning. They also discuss about the potential disadvantages
such as vendor lock in.[2]

Geoffrey C. Fox, Vatche Ishakian, Vinod
Aleksander Slominski in their whitepaper “First
Workshop on Serverless Computing (WoSC)
current state of serverless. Serverless is the next
computing supporting centralized and edge computing
common event-driven programming model.
build the long dreamed infinite limitless computing
future of serverless has also been discussed in this paper.
Serverless will be applied to general purpose
will grow in capability and limitations such
kill limit” will disappear. It will be great for end
they will not need to know scaling and distributed
They discuss the need for serverless development community
[3].

Erwin van Eyk, Simon Sief and Markus Thommes in their
paper “The SPEC Cloud Group’s Research Vision on FaaS
and Serverless Architectures” addresses the community
problem suffered by the Serverless and FaaS platforms. They
proposed four perspectives that aim to capture the direction of
the serverless field, and in particular of FaaS architectures.
They are A Cloud-Native Programming Model, Separation
between Business and Operational Logic, Hybrid Clouds and
Focus on Cost/Performance. They have defined serverless as

of Computation

12610

olution of Serverless

Adam Eivey says in “Be Wary of the Economics of
“Serverless” Cloud Computing” that serverless has the
potential to be a great abstraction offering economic
advantages for simple workflows, but beware of throwing
everything into it too hastily. It means that cost is often
calculated on per hit basis. If your APIs are having broader
execution time or accessed frequently then buying a on
demand instance is quite cheap when compared to serverless.

ss should be solely based on the nature of

Gojko Adzic and Robert Chately in their paper “Serverless
Computing: Economic and Architectural Impact” says that
serverless platforms today are useful for important tasks,

y, rather than very low latency,
and where individual requests can be completed in a relatively
short time window. The economics of hosting such tasks in a
serverless environment make it a compelling way to reduce

up time to market for
delivery of new features. They take up case study of startups
such as Mindmup and Yubl and show how adopting serverless
has reduced their cost upto 66% to 95%. They shed light on
opportunities created by the serverless platform such as
removing incentives for bundling and removing barriers to
versioning. They also discuss about the potential disadvantages

Ishakian, Vinod Muthusamy,
r “First International

(WoSC) 2017” explains
next generation of
computing with a

model. Serverless will
computing fabric. The

future of serverless has also been discussed in this paper.
purpose computing and it

 as the “5 minute
for end developers as

distributed computing.
They discuss the need for serverless development community

Erwin van Eyk, Simon Sief and Markus Thommes in their
paper “The SPEC Cloud Group’s Research Vision on FaaS
and Serverless Architectures” addresses the community

the Serverless and FaaS platforms. They
proposed four perspectives that aim to capture the direction of
the serverless field, and in particular of FaaS architectures.

Native Programming Model, Separation
ogic, Hybrid Clouds and

Focus on Cost/Performance. They have defined serverless as

an abstract model of cloud software development, where, with
FaaS, cloud functions are executed as services, with operations
delegated to infrastructure operating transparen
developers and their customers. We have introduced the
concept of simple and composite, workflow
functions, and proposed as layered model for FaaS
software architectures [4].

Serverless Architecture

Functions are the unit of scale in serverless that theoretically
abstract the language runtime. We don't discuss the amount
CPU or RAM or some other asset we require for a function to
run. We speak pretty much the time it takes to run the function.
Every single other metric ought
our functions, deploy them to the cloud,
these functions ran [4].

A serverless solution consists of a web server, FaaS layer,
security token service (STS), user authentication and database.

Figure 3 General Serverless Architecture

Client Application – The UI of your application is best
rendered customer side in Javascript which enables you to
utilize a straightforward, static web server. Web Server
Amazon S3 provides a robust and simple web server.
the static HTML, CSS and JS files for your application can be
served from S3. FaaS solution
agent in serverless design[10]. Some well
FaaS are AWS Lambda, Google Cloud Functions, and
Microsoft Azure Functions. AWS Lambda is utilized as a part
of this system. The application administrations for signing in
and getting to information will be worked as Lambda
capacities. These capacities will read and compose from your
database and give JSON responses. Security Token Service
(STS) will generate temporary AWS credentials (API key and
secret key) for users of the application. These temporary
credentials are used by the client application to invoke the
AWS API (and thus invoke Lambda). User Authentication
AWS Cognito is an identity service which is integrated with
AWS Lambda. With Amazon Cognito, you can easily add user
sign-up and sign-in to your mobile and web
the options to authenticate users through social identity
providers such as Facebook, Twitter, or Amazon, with SAML
Identity solutions, or by using your own identity system.
Database – AWS Dynamo DB provides a fully managed

an abstract model of cloud software development, where, with
FaaS, cloud functions are executed as services, with operations
delegated to infrastructure operating transparently to cloud
developers and their customers. We have introduced the
concept of simple and composite, workflow-like cloud
functions, and proposed as layered model for FaaS-based

f scale in serverless that theoretically
abstract the language runtime. We don't discuss the amount
CPU or RAM or some other asset we require for a function to
run. We speak pretty much the time it takes to run the function.
Every single other metric ought not to trouble us. We compose
our functions, deploy them to the cloud, and pay just for time

A serverless solution consists of a web server, FaaS layer,
security token service (STS), user authentication and database.

General Serverless Architecture

The UI of your application is best-
rendered customer side in Javascript which enables you to
utilize a straightforward, static web server. Web Server –
Amazon S3 provides a robust and simple web server. All of
the static HTML, CSS and JS files for your application can be
served from S3. FaaS solution – It is the key empowering

. Some well-known providers of
FaaS are AWS Lambda, Google Cloud Functions, and
Microsoft Azure Functions. AWS Lambda is utilized as a part
of this system. The application administrations for signing in
and getting to information will be worked as Lambda
apacities. These capacities will read and compose from your

database and give JSON responses. Security Token Service
(STS) will generate temporary AWS credentials (API key and
secret key) for users of the application. These temporary

y the client application to invoke the
AWS API (and thus invoke Lambda). User Authentication –
AWS Cognito is an identity service which is integrated with
AWS Lambda. With Amazon Cognito, you can easily add user

in to your mobile and web apps. It also has
the options to authenticate users through social identity
providers such as Facebook, Twitter, or Amazon, with SAML
Identity solutions, or by using your own identity system.

AWS Dynamo DB provides a fully managed

International Journal of Current Advanced Research Vol 7, Issue

NoSQL database. Dynamo DB is not essential for a serverless
application but is used as an example here [8]

Serverless design doesn't entirely indicate what our functions
actually should be. It is only some unit of work that we need to
be finished. Functions can be activated numerous ways. It can
be a clock that runs a capacity intermittently, however it can
likewise be HTTP ask for or some event in some related
service. On a very basic level, FaaS is tied in with running
back-end code without dealing with your own par
frameworks or your own particular server applications. Since
we have no server applications to run, deploying is altogether
different from conventional frameworks – we transfer the code
to the FaaS supplier, and it does everything else. Func
FaaS are activated by events specified characterized by the
supplier. Most suppliers additionally enable functions to be
activated as a reaction to inbound HTTP asks for, normally in
some sort of API Gateway.

Cost of Serverless

Amazon Web Services was the primary cloud supplier to
present serverless with "Lambda functions" in 2014
however comparative offerings from Google, Microsoft, IBM,
and others have been presented from that point forward.
Numerous small players are additionally ar
anxious to compete in the market. There are numerous
likenesses and a few contrasts between estimating models and
genuine costs, and cloud evaluating is famously subject to
revisions, but we investigate one that is extremely
illustrative—Amazon Web Services Lambda.

Serverless lambda costs us in two ways [14]
costs and second is hidden costs. Visible costs consist of
requests and CPU & RAM usages. The hidden costs comprises
of API requests and networking costs. Some unkno
such as code maintenance also adds up. An AWS Lambda
work with 512 MB of memory costs $0.030024 contrasted
with an On-Demand server with the same details costing
$0.0059. So when your CPU is completely used constantly,
running on Serverless may not be taken a toll productive for
your workload. Serverless may prove costly if data and
networking are prime contenders for the cost. API Gateway
has a tendency to be a tremendous piece of your Serverless
costs when you associate with a ton of APIs. The mo
asks for you make per trigger, the less savings you'll see from
switching to Serverless [1].

Table 1 Serverless cost comparision

International Journal of Current Advanced Research Vol 7, Issue 5(F), pp 12609-12612

12611

e. Dynamo DB is not essential for a serverless
[8].

Serverless design doesn't entirely indicate what our functions
actually should be. It is only some unit of work that we need to

tivated numerous ways. It can
be a clock that runs a capacity intermittently, however it can
likewise be HTTP ask for or some event in some related
service. On a very basic level, FaaS is tied in with running

end code without dealing with your own particular server
frameworks or your own particular server applications. Since
we have no server applications to run, deploying is altogether

we transfer the code
to the FaaS supplier, and it does everything else. Functions in
FaaS are activated by events specified characterized by the
supplier. Most suppliers additionally enable functions to be
activated as a reaction to inbound HTTP asks for, normally in

Services was the primary cloud supplier to
present serverless with "Lambda functions" in 2014[13],
however comparative offerings from Google, Microsoft, IBM,
and others have been presented from that point forward.
Numerous small players are additionally arranging offerings,
anxious to compete in the market. There are numerous
likenesses and a few contrasts between estimating models and
genuine costs, and cloud evaluating is famously subject to
revisions, but we investigate one that is extremely

Amazon Web Services Lambda.

[14]. One is visible
costs and second is hidden costs. Visible costs consist of
requests and CPU & RAM usages. The hidden costs comprises
of API requests and networking costs. Some unknown costs
such as code maintenance also adds up. An AWS Lambda
work with 512 MB of memory costs $0.030024 contrasted

Demand server with the same details costing
$0.0059. So when your CPU is completely used constantly,

t be taken a toll productive for
your workload. Serverless may prove costly if data and
networking are prime contenders for the cost. API Gateway
has a tendency to be a tremendous piece of your Serverless
costs when you associate with a ton of APIs. The more API
asks for you make per trigger, the less savings you'll see from

Serverless cost comparision

It is important to know how much time our functions takes to
execute. Currently Lambda supports function runtime of
seconds. So larger function have to split up to accommodate
this constraint. Also results of function might be different on
each platform based in congestion levels, noisy neighbors and
different generation of hardware. While balancing this
difference we may increase the execution time which adds up
to the serverless bill.

Use Case

For the use case we take a look on Heavywater Inc
organization is centered around utilizing artificial intelligence
virtual assistants to empower business proces
and the framework is constructed totally on Amazon Web
Services (AWS). A major component of the product involved
processing batch files, and their orchestration infrastructure
was built using SWF and EC2 instances. Their approach had
some drawback such as their batch processing jobs controlled
by SWF were being executed and monitored 24x7
on the same EC2 instances used by their microservices. They
were using t2.micro EC2 instances but still within 4 months
their bill increased from $10K to $30K with over 1,000 EC2
instances running Indeed, even with all the spend, throughput
was as yet an issue - with a normal handling rate of just 4000
documents at regular intervals. To exacerbate the situation,
SWF would come up short various circ
nondeterministic issue. They had lot of brain
with AWS support and finally AWS suggested them to use
step functions. AWS Step Functions makes it easy to
coordinate the components of distributed applications and
microservices using visual workflows. As a first step they
converted all of their microservices into lambda functions and
they also converted their workflows into step functions.

Instead of using the decider in SWF to transitions of workflow
transitions, they built their own decider using Step Functions.
Whenever a workflow was completed, it would invoke the
starter Lambda of Step Function with parameters of which
workflow needs to be triggered next.

Figure 4 Sample Step function

The benefits were evident. C
amount. Number of EC2 instances reduced to 211. Human
work reduced to 16 hours from usual 24 hours. By adopting
this method they got a bill of around $4k only which is $26k
less than previous approach. Switching into Serverless
been a major turning point in the success of the company
which directly helped them to sustain in the market.

12612, May 2018

It is important to know how much time our functions takes to
execute. Currently Lambda supports function runtime of 300
seconds. So larger function have to split up to accommodate
this constraint. Also results of function might be different on
each platform based in congestion levels, noisy neighbors and
different generation of hardware. While balancing this

we may increase the execution time which adds up

For the use case we take a look on Heavywater Inc [15]. The
organization is centered around utilizing artificial intelligence
virtual assistants to empower business process outsourcing,
and the framework is constructed totally on Amazon Web
Services (AWS). A major component of the product involved
processing batch files, and their orchestration infrastructure
was built using SWF and EC2 instances. Their approach had

awback such as their batch processing jobs controlled
ing executed and monitored 24x7 and relied

on the same EC2 instances used by their microservices. They
were using t2.micro EC2 instances but still within 4 months

$10K to $30K with over 1,000 EC2
Indeed, even with all the spend, throughput

 with a normal handling rate of just 4000
documents at regular intervals. To exacerbate the situation,
SWF would come up short various circumstances due to a
nondeterministic issue. They had lot of brain storming sessions
with AWS support and finally AWS suggested them to use
step functions. AWS Step Functions makes it easy to
coordinate the components of distributed applications and

vices using visual workflows. As a first step they
converted all of their microservices into lambda functions and
they also converted their workflows into step functions.

Instead of using the decider in SWF to transitions of workflow
ilt their own decider using Step Functions.

Whenever a workflow was completed, it would invoke the
starter Lambda of Step Function with parameters of which
workflow needs to be triggered next.

Sample Step function

The benefits were evident. Costs reduced to considerable
amount. Number of EC2 instances reduced to 211. Human
work reduced to 16 hours from usual 24 hours. By adopting
this method they got a bill of around $4k only which is $26k
less than previous approach. Switching into Serverless has
been a major turning point in the success of the company
which directly helped them to sustain in the market.

Serverless Architecture The Future of Computation

Figure 5 Cost chart

From figure 5 we can clearly see how Heavywater saved their
expenses by adopting serverless computation.

CONCLUSION

In conclusion, serverless platform today are valuable for
imperative assignments, where high-through
instead of low inactivity, and where singular requests can be
finished in a moderately brief time window. The financial
aspects of facilitating such errands in a serverless domain
make it a convincing method to decrease facilitating costs
fundamentally, and to accelerate time to market the new
future. It gives low operational and development cost and also
reduces complexity of software because of use of
microservices [9]. But as every good thing has, even serverless
suffers from drawbacks. It is not efficient for long running
application. Vendor lock in is another serious drawback
Your application is totally reliant on an outsi
don't have a full control of your application. Undoubtedly, you
can't change your stage or supplier without rolling out critical
improvements to your application. Additionally, you are
reliant on platform availabilty, and the platforms's A
expenses can change [5]. In spite of the complete
documentation and community resources, you may soon
discover that the expectation to learn and adapt for FaaS
instruments is quite steep. Likewise, to effortlessly move to
serverless, you should need to split your monolith into
microservices, another difficult assignment to handle. That is
the reason it's desirable to get assistance from experts
experienced in serverless tools. Serverless is suitable for
application like IoT, Virtual assistants and ch
rich applications and Agile and Continuous Integration
pipelines etc.

References

1. Adam Eivy. 2017. Be Wary of the Economics of
"Serverless" Cloud Computing. IEEE Cloud
Computing, published by the IEEE computer society.

How to cite this article:

Udith Shankar M and Vanishree K(2018) 'Serverless Architecture The Future of Computation
Current Advanced Research, 07(5), pp. 12609

of Computation

12612

From figure 5 we can clearly see how Heavywater saved their
expenses by adopting serverless computation.

In conclusion, serverless platform today are valuable for
through put is vital,

instead of low inactivity, and where singular requests can be
finished in a moderately brief time window. The financial

of facilitating such errands in a serverless domain
make it a convincing method to decrease facilitating costs
fundamentally, and to accelerate time to market the new
future. It gives low operational and development cost and also

ware because of use of
. But as every good thing has, even serverless

suffers from drawbacks. It is not efficient for long running
application. Vendor lock in is another serious drawback [2].
Your application is totally reliant on an outside supplier. You
don't have a full control of your application. Undoubtedly, you
can't change your stage or supplier without rolling out critical
improvements to your application. Additionally, you are
reliant on platform availabilty, and the platforms's API and

. In spite of the complete
documentation and community resources, you may soon
discover that the expectation to learn and adapt for FaaS
instruments is quite steep. Likewise, to effortlessly move to

to split your monolith into
microservices, another difficult assignment to handle. That is
the reason it's desirable to get assistance from experts
experienced in serverless tools. Serverless is suitable for
application like IoT, Virtual assistants and chatbots, Image-
rich applications and Agile and Continuous Integration

2017. Be Wary of the Economics of
"Serverless" Cloud Computing. IEEE Cloud
Computing, published by the IEEE computer society.

2. Gjko Adzic, Robert Chatley. 2017.
Computing: Econmic and Architectural Impact.
ESEC/FSE’17, September 4
Germany

3. Goffrey C. Fox, Vatche
Aleksander Slominski. 2017. First
Workshop on Serveless Computing

4. ErwinvanEyk, Alexandru Iosup, Simon Sief, Markus
Thommes. 2017. The SPEC Cloud Group’s Research
Vision on FaaS and Serverless Architectures WoSC’17,
2017, Las Vegas, NV, USA.

5. Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng,
Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod
Muthusamy, Rodric Rabbah, Aleksander Slominski,
Philippe Suter. 2017. Serverless Computing: Current
Trends and Open Problems. arXiv:1706.03178v1
[cs.DC] 10 Jun 2017.

6. Michael Armbrust, Armando Fox, Rean Griffith,
Anthony D. Joseph, Randy Katz, Andy Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Mate iZaharia.2010. A View of Cloud Computing.
Commun. ACM 53, 4(April 2010),50

7. Nick Gottlieb. 2016. State of the Serverless Community
Survey Results.

8. Alexandru Iosup and Dick H.J. Epema. 2011. Grid
Computing Workloads. IEEE Internet Computing.

9. Sameer Limaye and Asif Khan. 2017. Serverless
Computing: A Compelling Opportunity for Today’s
Digital Enterprise. TCS Whitepaper.

10. Chard R. 2017. FaaS:
[Internet]. First International
Computing. (WOSC).

11. Barga RS. 207. Serverless
Cloud [Internet]. First
Serverless Computing (WoSC).

12. McGrath G. 2017.
Opportunities [Internet].
on Serverless Computing

13. “AWS Lambda,” February 2017; https://aws.amaz
.com/lambda/

14. “AWS Lambda Pricing,” February 2017; https://
aws.amazon.com/lambda/pricing.

15. ”ServerLess Framework” February 2017; https://
serverless.com.

16. GojkoAdzic.2017. The key lesson from our serverless
migration. https://gojko. net/2017/02/23/serverl
migration-lesson.html.(2017). Accessed:2017

17. Mohsiur Rahman. 2017. How serverless reduced our
costs by 70%. https://read.acloud.guru/how
serverless-helped-us-reduce

 Serverless Architecture The Future of Computation', International Journal of

12609-12612. DOI: http://dx.doi.org/10.24327/ijcar.2018

Gjko Adzic, Robert Chatley. 2017. Serverless
Computing: Econmic and Architectural Impact.
ESEC/FSE’17, September 4-8, 2017, Paderborn,

, Vatche Ishakian, Vinod Muthusamy,
Slominski. 2017. First International

Computing. WoSC.
ErwinvanEyk, Alexandru Iosup, Simon Sief, Markus
Thommes. 2017. The SPEC Cloud Group’s Research
Vision on FaaS and Serverless Architectures WoSC’17,
2017, Las Vegas, NV, USA.

Castro, Kerry Chang, Perry Cheng,
Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod
Muthusamy, Rodric Rabbah, Aleksander Slominski,
Philippe Suter. 2017. Serverless Computing: Current
Trends and Open Problems. arXiv:1706.03178v1

ichael Armbrust, Armando Fox, Rean Griffith,
Anthony D. Joseph, Randy Katz, Andy Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Mate iZaharia.2010. A View of Cloud Computing.

4(April 2010),50–58.
tate of the Serverless Community

Alexandru Iosup and Dick H.J. Epema. 2011. Grid
Computing Workloads. IEEE Internet Computing.
Sameer Limaye and Asif Khan. 2017. Serverless

A Compelling Opportunity for Today’s
TCS Whitepaper.

Chard R. 2017. FaaS: The future of computing
International Workshop on Serverless

Serverless Computing: Redefining the
First International Workshop on

(WoSC).
2017. Provider-Side Serverless

[Internet]. First International Workshop
Computing (WoSC).

“AWS Lambda,” February 2017; https://aws.amazon

“AWS Lambda Pricing,” February 2017; https://
aws.amazon.com/lambda/pricing.
”ServerLess Framework” February 2017; https://

GojkoAdzic.2017. The key lesson from our serverless
migration. https://gojko. net/2017/02/23/serverless-

lesson.html.(2017). Accessed:2017-04-20.
Mohsiur Rahman. 2017. How serverless reduced our

costs by 70%. https://read.acloud.guru/how-going-
reduce-costs-by-70-255adb87b093

International Journal of
8.12612.2223

