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INTRODUCTION 
 

There are various methods used in the Software Bug 
Prediction Analysis such as Logistic Regression, Naive Bayes
(NB), k-Nearest Neighbor, Neural Network, Decision trees, 
Support Vector Machines, Random Forest etc.
 

We have used Factor Analysis and linear regression model for 
finding the most important factors for software bug prediction.
T. Zimmermann, R. Premraj, and A. Zeller
mapped defects from the bug database of Eclipse (one of the 
largest open-source projects) to source code locations. The 
resulting data set lists the number of pre-
defects for every package and file in the Eclipse releases 2.0, 
2.1. 
 

Several researchers used historical data without taking bug 
databases into account. Khoshgoftaar et al
modules as defect-prone whenever the number of lines of code 
added or deleted exceeded a threshold. Graves 
sum of contributions to a module in its history to predict defect 
density. Ostrand et al. [4] used historical data from up to 17 releases 
to predict the files with the highest defect density in the next release. 
Hudepohl et al. [5] predicted whether a module would be def
prone by combining metrics and historical data. From several 
software metrics, Denaro et al. [6] learned logistic regression 
models for Apache 1.3 and verified them against Apache 2.0.
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                             A B S T R A C T  
 

 

As Software’s are fault prone and there is a need to predetermine the chances of existence 
of bugs while developing the software on the basis of Different Metrics/Factors which are 
important. Through Bug prediction models, Software developers can know in advance 
which factors are important so that they will make sure that Probability of coming of 
Software Bugs post Release/Implementation is minimal/least. This Research paper 
emphasizes mainly on prediction of the software post release bugs for the Eclipse Software. 
In order to reduce the number of dimensions of the input feature vector, factor analysis 
which uses concept of feature selection is applied and new matrix with lower number of 
dimensions is used as input to general linear regression based prediction models. Finally 
results are compared among different versions of Eclipse i.e., version 2.0 & 2.1 with 
correlation based dimension selection process and empirical study was conducted to 
compare prediction results. 

There are various methods used in the Software Bug 
Prediction Analysis such as Logistic Regression, Naive Bayes 

Network, Decision trees, 
rt Vector Machines, Random Forest etc. 

We have used Factor Analysis and linear regression model for 
finding the most important factors for software bug prediction. 
T. Zimmermann, R. Premraj, and A. Zeller et al. [2] have 

Eclipse (one of the 
source code locations. The 

- and post-release 
package and file in the Eclipse releases 2.0, 

al researchers used historical data without taking bug 
et al. [1] classified 

prone whenever the number of lines of code 
old. Graves et al. [3] used the 

tions to a module in its history to predict defect 
. [4] used historical data from up to 17 releases 

to predict the files with the highest defect density in the next release. 
. [5] predicted whether a module would be defect-

by combining metrics and historical data. From several 
. [6] learned logistic regression 

against Apache 2.0. 

Factor Analysis based on covariance and feature selection 
methodology is used for the reduction of number of variables.
Bug Findings is very important for any software to be
implemented and maintained. 
detection and diagnosis (FDD) aims to determine whether a 
software module is faulty, or to estimate the probability that it 
has at least one fault, defined as fault
from the FDD of mechanical and electronic systems
proneness prediction of software modules has no measurement 
data from sensors as their predictive 
software measures such as static code or design metrics as 
predictors. To predict the fault
dataset that includes software metrics and the fault proneness 
state (fault-free or faulty) of the instance
agreed that the more faults a module has, the more likely that it 
will fail in operation. In this paper, we have 
Selection using factor analysis for reducing the number of 
factors and then used the linear regression mod
the best factors which helps software developers 
Software bugs for further versions of Eclipse.
 

Feature Selection 
 

Feature selection is the study of algorithms for reducing 
dimensionality of data to improve machine learning 
performance. For a dataset with 
(or features, attributes), feature selection aims to reduce 
M’ and M’ ≤ M (Sammut and Webb 2011). It is an important 
and widely used approach to dimensionality reduction. 
Another effective approach is feature extraction. One of the 
key distinctions of the two approaches lies at their outcomes. 
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odology is used for the reduction of number of variables. 
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implemented and maintained. In software engineering, fault 
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has at least one fault, defined as fault-proneness. Different 

chanical and electronic systems, fault-
proneness prediction of software modules has no measurement 
data from sensors as their predictive features but rather it has 
software measures such as static code or design metrics as 
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dataset that includes software metrics and the fault proneness 
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and widely used approach to dimensionality reduction. 
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Assuming we have four features F1, F2, F3, F4, if both 
approaches result in 2 features, the 2 selected features are a 
subset of 4 original features (say, F1, F3), but the 2 extracted 
features are some combination of the 4 original features. 
Feature selection is commonly used in applications where 
original features need to be retained. Some examples are 
document categorization, medical diagnosis and prognosis as 
well as gene-expression profiling. The benefits of feature 
selection are multifold: it helps improve machine learning in 
terms of predictive accuracy, comprehensibility, learning 
efficiency, compact models, and effective data collection. The 
objective of feature selection is to remove irrelevant and/or 
redundant features and retain only relevant features. 
 

We have Covariance calculation using correlation coefficient 
used in the Factor Analysis. 
 

Instead of using only covariance between variables we used 
correlation coefficient which is the ratio of covariance  
between  two variables divided by the standard deviation of 
each variable calculated using the below equation. 
 

ρ(x,y) = cov(x,y) / σ(x).σ(y) 
 

Factor Analysis is done on the dimensions and then we found 
some Factors for the prediction of Bugs in the Software .After 
finding the factors we have applied the Linear regression for 
getting the dependency on the independent factors came using 
factor Analysis. After the components have been chosen and 
the matrix has been set, the matrix of correlations (in general 
case –n matrices) between parameters can be calculated. 
Factor analysis transforms this matrix to the matrix of factors, 
where each of them reflects a set of components connected to a 
one system-forming element and represents a system-forming 
connection of elements. It is important to note that by using the 
technique of principal components all factors become 
orthogonal and caused by different properties of the system. 
Hence, we can see that the factor analysis follows the logic of 
the above mentioned theoretical ideas and their principles. 
 

Data Description 
 

Data consists of one file for each level (files, packages) and 
release (2.0, 2.1). Each case contains the following 
information: 
 

Name: The name of the file, respectively, to which this case 
corresponds. It can be used to identify the source code in the 
release and may be needed for additional data collection. 
 

Pre-release defects: The number of non-trivial defects that 
were reported in the last six months before release. 
 

Post-release defects: The number of non-trivial defects that 
were reported in the first six months after release. 
 

Complexity metrics: We computed for each case several 
complexity metrics. Metrics that are Computed for classes or 
methods are aggregate by using average (avg), maximum 
(max), and accumulation (sum) to file and package level. 
 

Summary of Data set we have taken is: 
 

Project: Eclipse (eclipse.org) 
Content: Defect counts (pre- and post-release) 
Releases: Version 2.0, 2.1  
Level: Packages and files 
URL: http://www.st.cs.uni-sb.de/softevo/bug-data/eclipseNo.  
More data: Eclipse source code (for archived releases): 

http://archive.eclipse.org/eclipse/downloads/ 
 

Different metrics are used (No. given in Table 1) such as  
Assignment,, Block, Comment Boolean Literal, Break 
Statement, Cast Expression, CatchClause, Character Literal, 
TOC,, Compilation Unit, Conditional ExpresoConstructor 
Invocation, Continue Statement, DoStatement are used. 
 

 
 
 
 

 
Analysis   
 

Analysis is being done on two versions of Eclipse 2.0 and 2.1 
by using factor Analysis and then we used Linear Regression 
Modeling in SPSS to get the best factors which are most 
important for the Bug Prediction for coming versions of the 
Eclipse. 
 

Table 2 Adjusted R Square Values for two versions of eclipse 
 

Model Summary 

Eclipse 
Version 

R R Square 
Adjusted R 

Square 

Std. Error 
of the 

Estimate 
2.0 .634 .403 .392 .719 
2.1 .634 .401 .391 .719 

 

Adjusted R-Square -  A version of R-Squared that has been 
adjusted for the number of predictors in the model.  R-Squared 
tends to over estimate the strength of the association especially 
if the model has more than one independent variable. 

 
In our Comparative Analysis in Table no. 2 Adjusted R Square 
is almost same in all the two versions. Standard error for all 
the two versions are almost same .791 for version 2.0 and 
version 2.1   
 

Analysis of Variance (ANOVA) consists of calculations that 
provide information about levels of variability within a 
regression model and form a basis for tests of significance. 
The regression line concept, DATA = FIT + RESIDUAL, is 
rewritten as follows:  
 

(yi - )    =     ( i - ) + (yi - i).  
 
The first term is the total variation in the response y, the 
second term is the variation in mean response, and the third 
term is the residual value. Squaring each of these terms and 
adding over all of the n observations gives the equation  
 

(yi - )² = ( i - )² + (yi - i)².  
 

This equation may also be written as SST = SSM + SSE, 
where SS is notation for sum of squares and T, M, and E are 
notation for total, model, and error, respectively.  
 

The square of the sample correlation is equal to the ratio of the 
model sum of squares to the total sum of squares:         
r² = SSM/SST.  

 

Table 1 No. of metrics and files Initially Taken 
 

Version No 
Number of 
Complexity Metrics 

No. of  files 

Eclipse 2.0 218 6729 
Eclipse 2.1 256 6729 
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This formalizes the interpretation of r² as explaining the 
fraction of variability in the data explained by the regression 
model.  
 

The sample variance sy² is equal to 

 (yi - )²/(n - 1) = SST/DFT,  
the total sum of squares divided by the total degrees of 
freedom (DFT). For simple linear regression, the MSM (mean 

square model) = ( i - )² / (1) = SSM/DFM, since the 
simple linear regression model has one explanatory variable x.  

The corresponding MSE (mean square error) =  

(yi - i)²/(n - 2) = SSE/DFE, the estimate of the 

variance about the population regression line ( ²).  
 

ANOVA calculations are displayed in an analysis of variance 
Table 3, which has the following format for simple linear 
regression: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 4 shows that F test comes out to be same for both the 
versions and having almost the same value.   
 

RESULT 
 

Table 5 Shortlisted Factors Having Significance Level 
Between .000 And .003 And Then Common Factors Among 

Two Versions 
 

S No. Eclipse Version 2.0 Eclipse Version 2.1 Intersection 
1 NOF_MAX NBD_SUM NSM_AVG 
2 NSM_AVG NOM_SUM BLOCK 
3 BLOCK NSM_AVG QUALIFIEDNAME 
4 QUALIFIEDNAME BLOCK TRYSTATEMENT 
5 TRYSTATEMENT FIELDDECLARATION PRE 
6 PRE IFSTATEMENT NBD_SUM 
7 NBD_SUM TRYSTATEMENT IFSTATEMENT 
8 NOF_AVG NULLLITERAL TLOC 
9 ARRAYINITIALIZER QUALIFIEDNAME MODIFIER 

10 CATCHCLAUSE MODIFIER NUMBERLITERAL 
11 IFSTATEMENT TLOC NOM_SUM 

12 
IMPORTDECLARAT

ION 
PRE 

 
13 STRINGLITERAL NORM_FIELDACCESS 

14 
VARIABLEDECLAR
ATIONFRAGMENT 

NBD_MAX 

15 
NORM_THISEXPRE

SSION 
VG_MAX 

 

16 TLOC NUMBERLITERAL 
17 MODIFIER 

 

18 ASSIGNMENT 
19 NOM_SUM 
20 ARRAY_CREATION 
21 MLOC_MAX 

22 
NORM_THROWSTA

TEMENT 
23 NORM_BLOCK 
24 NUMBERLITERAL 

25 
EXPRESSIONSTATE

MENT 
 

Table 5 displays Total No of factors coming from Factor 
Analysis & Significance Level Between .000 And .003 in 
Eclipse version 2.0 are  25 & Total No of factors coming from 
Factor Analysis & Significance Level Between .000 And .003 
in Eclipse version 2.1 are  16. 
 

This table also shows the intersection of the factors from 
version 2.0 and version 2.1 in the fourth column which are 
common factors and these comes out eleven These eleven 
factors are to be considered the most important and prone to 
Bugs post software release. 
 

CONCLUSION  
 

After the Analysis we come to the conclusion that Eleven 
predictors NSM_AVG, BLOCK, QUALIFIEDNAME, 
TRYSTATEMENT, PRE, NBD_SUM, IFSTATEMENT, 
TLOC, MODIFIER, NUMBERLITERAL, NOM_SUM are 
most important and useful for the prediction of Software Bugs. 
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Table 3 General Anova Table 
 

Source Sum of squares 
Degrees 

of 
freedom 

Mean 
Square 

F 

Model 
( i- )² 

1 SSM/DFM 

MSM / 
MSE 

Error 
(yi- i)² 

n-2 SSE/DFE 

Total 
(yi- )² 

n-1 SST/DFT 

 

Table 4 ANOVA TABLE for two versions of eclipse 
 

ANOVAa 

Eclipse Version 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

2.0 
Regression 2301.853 113 20.370 39.439 .000b 
Residual 3416.695 6615 .517   

Total 5718.548 6728    

2.1 
Regression 2295.410 110 20.867 40.343 .000b 
Residual 3423.138 6618 .517   

Total 5718.548 6728    

 


