

AN INTELLIGENT FAULT TOLERANCE ALGORITHM FOR ELECTING COORDINATOR IN
COORDINATED CHECKPOINTING WITH DUAL COORDINATOR AND SMART INTERVAL

Manoj Kumar Niranjan

1Rustamji Institute of Technology, BSF Academy, Tekanpur

A R T I C L E I N F O

INTRODUCTION

A distributed system is an application that executes a
collection of protocols to coordinate the actions of multiple
processes on a network to perform a single or small set
related tasks. A distributed system is called Fault Tolerant if it
can recover from failures without performing incorrect actions.
The failure may be a network failure, network partition failure,
timing failure, byzantine failure, omission failure, fail
failure or halting failure [1]. The fault tolerance can be
achieved by using Checkpointing which is a very well known
technique of fault tolerance. Our paper presents a new
algorithm for Checkpointing which can tolerate the failure of
any process (node) as well as Coordinator Process (Node) by
using dual coordinator methodology. In case of failure of
coordinator, our algorithm selects new coordinator efficiently.

Checkpointing

Checkpointing is the method of periodically recording the
states of the system onto the stable storage. Any such
periodically saved state is called the checkpoint of the process
[2]. A global state [3] of a distributed system is a set of
individual process state per process [2]. Checkpointing may be
one of two types, i.e., independent and coordinated
Checkpointing. In Independent Checkpointing, each process
takes checkpoint independently without requiring any
synchronization when a checkpoint is taken [4].

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319-6505,
Available Online at www.journalijcar.org
Volume 7; Issue 3(L); March 2018; Page No.
DOI: http://dx.doi.org/10.24327/ijcar.2018

Copyright©2018 Manoj Kumar Niranjan and Mahesh Motwani
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

Article History:

Received 14th December, 2017
Received in revised form 10th
January, 2018 Accepted 20th February, 2018
Published online 28th March, 2018

Key words:

Distributed Systems, Checkpointing, Fault
Tolerance, Smart Interval.

*Corresponding author: Manoj Kumar Niranjan
Rustamji Institute of Technology, BSF Academy, Tekanpur

AN INTELLIGENT FAULT TOLERANCE ALGORITHM FOR ELECTING COORDINATOR IN
COORDINATED CHECKPOINTING WITH DUAL COORDINATOR AND SMART INTERVAL

Manoj Kumar Niranjan1 and Mahesh Motwani2

Rustamji Institute of Technology, BSF Academy, Tekanpur
2UIT-RGPV, Bhopal

 A B S T R A C T

Checkpointing is a well known technique that tolerates the transient faults. T
algorithm selects a new coordinator efficiently in case of failure of coordinator.
communicates the messages within a specified time interval only and tolerates the fault
using dual coordinator methodology.

A distributed system is an application that executes a
collection of protocols to coordinate the actions of multiple
processes on a network to perform a single or small set of
related tasks. A distributed system is called Fault Tolerant if it
can recover from failures without performing incorrect actions.
The failure may be a network failure, network partition failure,
timing failure, byzantine failure, omission failure, fail-stop
failure or halting failure [1]. The fault tolerance can be
achieved by using Checkpointing which is a very well known
technique of fault tolerance. Our paper presents a new
algorithm for Checkpointing which can tolerate the failure of

de) as well as Coordinator Process (Node) by
using dual coordinator methodology. In case of failure of
coordinator, our algorithm selects new coordinator efficiently.

Checkpointing is the method of periodically recording the
states of the system onto the stable storage. Any such
periodically saved state is called the checkpoint of the process
[2]. A global state [3] of a distributed system is a set of

state per process [2]. Checkpointing may be
one of two types, i.e., independent and coordinated
Checkpointing. In Independent Checkpointing, each process
takes checkpoint independently without requiring any
synchronization when a checkpoint is taken [4].

In coordinated Checkpointing, the processes coordinate their
Checkpointing action in such a way that the set of local
checkpoints taken is consistent [5,6,7].

Existing Work

In the existing work, the communication is initiated by the
coordinator with other processes to create a checkpoint. If
message communication takes place after checkpoint request
of coordinator, the global checkpoint may
shown in fig. 1 in which process P
receiving a checkpoint request from the coordinator. If
process P1 receives message m before the checkpoint request,
the checkpoint will become inconsistent because checkpoint
c1,x confirms that message m is received from P
checkpoint c0,x says that it is not sent from P

Fig 1 Message communication between P
checkpoint

In another protocol, the message communication is allowed
within a fixed time interval only. This concept diminishes

International Journal of Current Advanced Research
6505, Impact Factor: 6.614

www.journalijcar.org
; Page No. 11260-11264

//dx.doi.org/10.24327/ijcar.2018.11264.1946

Niranjan and Mahesh Motwani. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

Manoj Kumar Niranjan
Rustamji Institute of Technology, BSF Academy, Tekanpur

AN INTELLIGENT FAULT TOLERANCE ALGORITHM FOR ELECTING COORDINATOR IN
COORDINATED CHECKPOINTING WITH DUAL COORDINATOR AND SMART INTERVAL

Checkpointing is a well known technique that tolerates the transient faults. The developed
algorithm selects a new coordinator efficiently in case of failure of coordinator. It
communicates the messages within a specified time interval only and tolerates the fault

In coordinated Checkpointing, the processes coordinate their
Checkpointing action in such a way that the set of local

consistent [5,6,7].

In the existing work, the communication is initiated by the
coordinator with other processes to create a checkpoint. If
message communication takes place after checkpoint request
of coordinator, the global checkpoint may be inconsistent
shown in fig. 1 in which process P0 sends message m after
receiving a checkpoint request from the coordinator. If

receives message m before the checkpoint request,
the checkpoint will become inconsistent because checkpoint

confirms that message m is received from P0, while
says that it is not sent from P0. [8]

Message communication between P0 and P1 causing inconsistent

checkpoint

In another protocol, the message communication is allowed
within a fixed time interval only. This concept diminishes

Research Article

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Current Advanced Research Vol 7, Issue 3(L), pp 11260-11264, March 2018

11261

message communication [9] which is beneficial in decreasing
the communication overhead. The main drawback of this
protocol is that it does not tolerate the fault in case of failure of
coordinator.

Another Checkpointing protocol specifies that, the coordinator
process is not fixed which reduces the probability of failure of
coordinator but the message communication could be
accomplished at any time i.e., there is no concept of fixed time
interval for message communication. Hence it increases
communication overhead [10].

In another protocol, all processes take checkpoints at the end
of their respective smart interval to form a global consistent
checkpoint. Since the Checkpointing is allowed only within
smart interval, the protocol will minimize various overheads
like Checkpointing overhead, message logging overhead etc
[12].

Proposed Work

The developed algorithm presents a new method that not only
selects the new coordinator in case of failure of coordinator but
also tolerates the fault. Each process knows the priority
number of rest of the processes. As soon as a process knows
that the coordinator has failed, it sends the message to the
process with second highest priority to be the new coordinator.
On receiving this message, the new coordinator sends
messages to all the remaining processes that I am the new
coordinator. Results shown in Table-2 show that the algorithm
developed by us takes less time in selecting the coordinator as
compared to Modified Bully Algorithm [11]. The better
coordinator selection time will provide faster execution of the
processes.

System Model

Let us consider a distributed system of ‘n’ processes, P0, P1,
……, Pn-1. The no. of processes ‘n’ is fixed for the duration of
execution. Let the checkpoints be denoted as CPk

i, (here k is
the process no. and i the checkpoint no.). The initial
checkpoint is taken when the system is being initialized. We
are assuming followings:

1. The network is secure, reliable and homogeneous with
infinite bandwidth and zero latency. The topology
doesn’t change and the transport cost is zero.

2. The network guarantees reliable FIFO (First In First
Out) delivery of messages between any pair of
processes. The assumption of FIFO delivery assures the
message synchronization.

3. There is one initiator process. In case of failure of
initiator process, a new process will act as initiator.

4. The message communication will take place only in
specified time interval which is elapsed between the
control messages for prepare checkpoint and take
checkpoint. If any process sends a message within this
time interval, it has to be logged and the process
execution is continued. This enables handling of lost
messages.

Protocol Description

The checkpoint initiator process sends checkpoint-prepare-
request-message to other processes to start Checkpointing. The
other processes send their responses to the initiator process. If
initiator process received replies from all processes within
specified time-interval then it sends take-checkpoint-request-

message and if initiator process does not receive replies from
any process within specified time-interval then it will send
abort-checkpoint-request-message. The set of checkpoint of all
processes received by initiator process is called global
checkpoint. The ith global checkpoint is the set CPi={CP0

i,
CP1

i,………, CPn-1
i} in a system of n processes.

The maximum transmission delay to reach a message to
destination is t. The T is the Checkpointing interval. Here
T>3t, since checkpoint interval (T) is obviously greater than
specified time-interval and the length of specified time-interval
is bound to be at least 3t to survive the transmission delay of
control messages.

Now, if the initiator process fails, a new initiator process has to
be selected. The protocol should also save the global
checkpoint which is stored at the initiator. Our protocol creates
a backup copy of global checkpoint which can be used at the
failure of initiator process. The backup copy will be stored at
the process which will act as initiator, if initiator process fails.
To select new initiator, one of three algorithms, i.e., Bully
algorithm, Chang and Roberts algorithm or the modified Bully
algorithm (proposed by me and described as procSelCoord)
may be used. Here I am using my algorithm, i.e.,
procSelCoord.

Checkpointing Process

The checkpoint process starts at the time of system
initialization. After T time interval of previous checkpoint, the
initiator process starts the process of Checkpointing. The first
initiator Pinit and backup initiator Pbinit will be selected by
leader-election algorithm suggested by Gallager, Humblet and
Spira.

The initiator process Pinit sends checkpoint-prepare-request-
message to all other processes at tprep. On receiving
checkpoint-prepare-request-message, each process write
tentative checkpoint after sending response to the initiator.

1. Now, if initiator receives response from all processes,
within (tprep+2*Ttrns), the initiator process sends take-
checkpoint-request-message to all processes. When
receiver receives take-checkpoint-request-message from
initiator process, the tentative checkpoint is made
permanent. This will save the states of all processes
which are responsible for preparing a global checkpoint.

2. Now, suppose if one or more process fails after
responding to checkpoint-prepare-request-message, then
the tentative checkpoint is used to recover the failed
process.

3. Now suppose if one or more process fails to respond to
checkpoint-prepare-request-message, the initiator
process sends abort-checkpoint-request-message to all
processes. On receiving this, the tentative checkpoint is
deleted. The copy of unacknowledged message keeps in
a log in this case.

4. If the global checkpoint created successfully, then it has
to be saved on backup initiator Pbinit. The Pinit sends the
global checkpoint data to Pbinit. After receiving the
global checkpoint Pbinit sends acknowledgement
message to Pinit. After receiving the acknowledgement
message from Pbinit, Pinit starts the process of next
checkpoint.

5. If the Pinit fails, then there may be three states. Pinit may
be fail before starting the checkpoint process, after

An Intelligent Fault Tolerance Algorithm For Electing Coordinator In Coordinated Checkpointing With Dual Coordinator And
Smart Interval

 11262

starting the checkpoint process but before completion of
checkpoint process or after completion of checkpoint
process, but before sending the global checkpoint to
backup initiator.

6. If Pinit fails before starting the checkpoint process, then
Pbinit and other process will not get checkpoint-prepare-
request-message from Pinit. If Pbinit does not receive the
checkpoint-prepare-request-message within the specific
time interval, then it first sends a test message to Pinit to
confirm the status of initiator. If Pinit replies positively,
then Pbinit takes no action, otherwise Pbinit starts the
process of next checkpoint. It also resets its role, now, it
acts as initiator and runs leader-election algorithm
proposed by me (procSelCoord) to find the next
initiator. After finding the next initiator (which will act
as backup initiator), the Checkpointing process
continues as above.

7. If Pinit fails after starting the checkpoint process but
before completion of checkpoint process, then Pbinit will
not get global checkpoint data. If Pbinit does not get the
global checkpoint data which should be received within
(tprep+2*Ttrns), then it sends a test message to Pinit to
confirm the status of initiator. If Pinit replies positively,
then Pbinit takes no action, otherwise Pbinit starts the
process of next checkpoint. It also resets its role, now, it
acts as initiator and runs coordinator-election algorithm,
proposed by me (procSelCoord), to find the next
initiator. After finding the next initiator (which will act
as backup initiator), the Checkpointing process
continues as above.

8. If Pinit fails after creating the global checkpoint but
before sending it to backup initiator, then also like
previous step, backup initiator Pbinit will not receive the
global checkpoint data within (tprep+2*Ttrns). Now, it
will send a test message to Pinit to confirm the status of
initiator. If Pinit replies positively, then Pbinit takes no
action, otherwise Pbinit starts the process of next
checkpoint. It also resets its role, now, it acts as initiator
and runs coordinator-election algorithm, proposed by
me (procSelCoord), to find the next initiator. After
finding the next initiator (which will act as backup
initiator), the checkpointing process continues as above.

9. In step (7) and (8), if Pbinit gets positive reply from Pinit,
but does not receive the global checkpoint data, then it
sends request message to send the global checkpoint
data, i.e., send-global-checkpoint-message. It waits for t
time to receive the global checkpoint data. If it does not
receive the global checkpoint within t, then it again
sends test message to Pinit and if it gets positive reply
then it repeat the step (9) until it get the global
checkpoint data. If it does not get positive reply, then it
starts acting as initiator like step (7) and (8).

Algorithm

Step-I

This step is executed to select the initiator process Pinit and
backup initiator Pbinit

1. Execute the coordinator-election algorithm described
as procSelCoord on the set of all process {Pi: 1≤i≤n}

2. Find the best suitable process using procSelCoord and
make it initiator Pinit

3. Exclude the Pinit from the set of all processes and run
the leader election algorithm procSelCoord on this
new set, i.e., {Pi: 1≤i≤n and i≠init)

4. Find the best suitable process for initiator using
procSelCoord and make it backup initiator Pbinit.

Step-II

This step is executed at initiator process Pinit

1. Send checkpoint-prepare-request-message to
remaining processes at tprep for (k+1)th checkpoint

2. Remove (k-1)th checkpoint, if exist.
3. Receive response from other processes within

(tprep+2*Ttrns)
4. If all processes respond positively then Send take-

checkpoint-request-message to all processes.
Create global-checkpoint and send it to Pbinit.
Else (if even a single process does not respond
positively or response does not arrive to initiator
process)

a) Send abort-checkpoint-request-message to all
processes

b) Retain copies of unacknowledged messages in a log

Step-III

This step is executed at other process Poth

1. Receive checkpoint-prepare-request-message from
initiator at trec

2. Send own response to initiator
3. If response is positive then Call save_state(Poth) to

write tentative-checkpoint asynchronously
4. Wait for decision of Pi till (trec+Ttrns+Ttrns)
5. If received decision is take-checkpoint-request-

message then Change status of tentative-checkpoint to
permanent
Else Delete tentative-checkpoint

6. Delete messages whose acknowledgements have
received. Log unacknowledged messages.

Step-IV

This step is executed at any process Pany for receiving message
1. If ((checkpoint number in message)=(checkpoint

number in Pany))
a. Send (tag1,s_id)
b. Receive(message)
2. else if ((checkpoint number in message)>(checkpoint

number in Pany))
a. save_state(Pany)
b. send(tag1,s_id)
c. receive(message)
3. else if ((checkpoint number in message)<(checkpoint

number in Pany))
a. send (tag2,s_id)
b. receive(message)

Step-V

This steps is executed at any process Pany for writing
unacknowledged messages

i. for all k
if (ack[k]=0) then write kth message in buffer

International Journal of Current Advanced Research Vol 7, Issue 3(L), pp 11260-11264, March 2018

11263

Step-VI

This steps is executed at backup initiator process Pbinit for
writing unacknowledged messages

for all k

if (ack[k]=0) then write kth message in buffer

Sub Algorithm (procSelCoord)

The algorithm to elect leader in case of failure of coordinator

Step-I

Any non-initiator process executes this step

a) Smart Interval Started//Start smart interval
b) If checkpoint-prepare-request-message received from

initiator Then
 Prepare the Checkpoint accordingly and Exit
 Else
 if no-message-received AND smart-interval-ended
 Then go to Step C

c. Send message to process with
PRIORITY=(HIGHEST PRIORITY-1)

d. Update the initiator priority, i.e., HIGHEST
PRIORITY=HIGEST PRIORITY-1

Step-II

This step is executed at process with PRIORITY=(HIGHEST
PRIORITY-1)

1. Received message NEW-LEADER from any process
2. Update initiator priority=MYSELF
3. Send message to all remaining processes with

HIGHEST PRIORITY=HIGHEST PRIORITY-1

Performance Results

The presented algorithm is simulated using parallel virtual
machine java libraries. The environment used for simulation of
algorithm is Windows 10 with JDK8 and for sub-algorithm
(procSelCoord) is Ubuntu 13.10 with Open JDK 7. Since, we
assumed consistent network bandwidth, we created all the
process on a single computer with Intel i3 processor and 2GB
DDR3 RAM. The results of simulation are as under:

Table 1 Results of algorithm

No. of
Processes

Total
Execution
Time(milli
seconds)

Time to
Checkpoint

(milli
seconds)

No. of
Failures in

Coordinator

No. of
Failures in

non-
Coordinator

Total
Execution

Time
(milli

seconds)
5 1000 100 1 2 1680
6 1100 110 2 4 2024
7 1200 120 3 6 2227
8 1300 130 4 8 2027
9 1400 140 5 10 1766

10 1500 150 6 12 2157
11 1600 160 7 14 2438
12 1700 170 8 16 2360
13 1800 180 9 18 2586
14 1900 190 10 20 2422
15 2000 200 11 22 2407
16 2100 210 12 24 2703
17 2200 220 13 26 3227
18 2300 230 14 28 3008
19 2400 240 15 30 3056
20 2500 250 16 32 3063
21 2600 260 17 34 3211
22 2700 270 18 36 3422
23 2800 280 19 38 3602

24 2900 290 20 40 4087
25 3000 300 21 42 4321
26 3100 310 22 44 3829
27 3200 320 23 46 3922
28 3300 330 24 48 3781
29 3400 340 25 50 3782
30 3500 350 26 52 4235
31 3600 360 27 54 4376
32 3700 370 28 56 4399
33 3800 380 29 58 4577
34 3900 390 30 60 4325
35 4000 400 31 62 4761
36 4100 410 32 64 4914
37 4200 420 33 66 4930
38 4300 430 34 68 4813
39 4400 440 35 70 4985
40 4500 450 36 72 5305
41 4600 460 37 74 5156
42 4700 470 38 76 5329
43 4800 480 39 78 5329
44 4900 490 40 80 6118
45 5000 500 41 82 5501
46 5100 510 42 84 6009
47 5200 520 43 86 6157
48 5300 530 44 88 5860
49 5400 540 45 90 6360
50 5500 550 46 92 6196
51 5600 560 47 94 6219
52 5700 570 48 96 6399
53 5800 580 49 98 6563
54 5900 590 50 100 6946

Fig 2 Graphical representation of results

Table 2 Results of sub-algorithm (procSelCoord)

Test
Case

Existing Algorithm
(Leader Election

Time in
Nanoseconds)

New Algorithm
(Leader Election

Time in
Nanoseconds)

Difference
(Leader Election

Time in
Nanoseconds)

1 1266498203 991008242 -275489961
2 1281315083 983011291 -298303792
3 861042068 973207262 112165194
4 876048862 861143185 -14905677
5 891176278 851309321 -39866957
6 906080737 841284902 -64795835
7 770943876 731246367 -39697509
8 1251484351 929271510 -322212841
9 785942972 710347724 -75595248

10 665670598 601252026 -64418572
11 1416515141 891265461 -525249680
12 1431641595 880390275 -551251320
13 1011235127 870433866 -140801261
14 1027204968 861219791 -165985177
15 1041107883 851172916 -189934967
16 1056340522 840479304 -215861218
17 921106138 836181520 -84924618
18 1401693770 821176971 -580516799
19 936087268 811181424 -124905844
20 681074417 600374247 -80700170
21 696678865 691711953 -4966912
22 635992439 681144737 45152298

0

2000

4000

6000

8000

10000

12000

14000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

E
xe

cu
ti

on
 T

im
e

(i
n

 m
il

li
se

co
n

d
s)

Test Cases
Total Execution Time without failure

Total Execution Time with failure

An Intelligent Fault Tolerance Algorithm For Electing Coordinator In Coordinated Checkpointing With Dual Coordinator And
Smart Interval

 11264

23 651030672 641096579 -9934093
24 732075833 661096860 -70978973
25 741028774 730134095 -10894679
26 620996552 620272001 -724551
27 710971555 710245978 -725577
28 667021367 620436496 -46584871
29 755366375 710394753 -44971622
30 1506920660 700233351 -806687309
31 719963377 690223047 -29740330
32 735614663 680160132 -55454531
33 981296926 670106840 -311190086
34 995512943 660188926 -335324017
35 951615687 650185359 -301430328
36 442128932 440158053 -1970879
37 966358461 630110535 -336247926
38 650585207 620154767 -30430440
39 625075100 610152484 -14922616
40 655841932 600087002 -55754930
41 1116641987 590104607 -526537380
42 1132469713 580076018 -552393695
43 585100995 570056730 -15044265
44 600963689 560106417 -40857272
45 575161973 550080393 -25081580
46 590187053 541311592 -48875461
47 570891393 530775815 -40115578
48 1146466624 520049481 -626417143
49 1102384906 510743337 -591641569
50 606057126 500051328 -106005798

CONCLUSION

In our algorithm, whenever initiator process Pi sends
checkpoint-prepare-request-message for (k+1)th checkpoint,
the protocol will automatically delete the (k-1)th global
checkpoint which results simplified garbage collection. The
results shown in Table 1 of new algorithm developed by us
show that processes continue their execution in presence of
faults in coordinator and non-coordinator processes. Further
our algorithm takes less time in electing the coordinator as
compared to modified bully algorithm in case the coordinator
process fails.

References

1. Introduction to Distributed System Design, Google
Code University,
http://code.google.com/edu/parallel/dsd-
tutorial.html#Basics

2. D. Manivannan, R.H.B. Netzer & M. Singhal, “Finding
Consistent Global Checkpoints in a Distributed
Computation”, IEEE Trans. On Parallel & Distributed
Systems, Vol.8, No.6, pp. 623-627 (June 1997)

3. J. Tsai & S. Kuo, “Theoretical Analysis for
Communication-Induced Checkpointing Protocols with
Rollback-Dependency Trackability”; IEEE Trans. On
Parallel & Distributed Systems, Vol.9, No. 10, pp. 963-
971 (October 1998)

4. B. Bhargava and S.R. Lian, “Independent
Checkpointing and Concurrent Rollback for Recovery
in Distributed Systems-An Optimistic Approach”,
Proceeding of IEEE Symposium on Reliable Distributed
Systems, pp. 3-12 (1988)

5. Guohong Cao, and Mukesh Singhal, “On Coordinated
Checkpointing in Distributed Systems,” IEEE
Transactions On Parallel And Distributed Systems,”
Vol. 9, No. 12, pp.1213-122 (Dec.1998)

6. Sharma D. D. and Pradhan D. K., “An Efficient
Coordinated Checkpointing Scheme for
Multicomputers,” Proc. IEEE Workshop on Fault-
Tolerant Parallel and Distributed Systems, pp 36-42
(June 1994)

7. E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel,
“The Performance of Consistent Checkpointing,” Proc.
11th Symp. Reliable Distributed Systems, pp. 39-47
(Oct. 1992)

8. E.N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang
and David B. Johnson, “A Survey of Rollback-
Recovery Protocols in Message-Passing Systems”,
ACM Computing Surveys (CSUR), Volume 34, Issue 3
(September 2002) Page(s):375-408 (2002)

9. Ch. D.V. Subba Rao and M.M. Naidu, “A New,
Efficient Coordinated Checkpointing Protocol
Combined with Selective Sender-Based Message
Logging”, IEEE/ACS International Conference on
Computer Systems and Applications, AICCSA 2008,
pp. 444-447 (2008)

10. Sarmistha Neogy, Anupam Sinha, Pradip K Das,
“CCUML: A Checkpointing Protocol for Distributed
System Processes”, IEEE Transactions on TENCON
2004, IEEE Region 10 Conference, Volume B, 21-24
Nov. 2004, Page(s):553-556 (2004)

11. Sandipan Basu, “An Efficient Approach of Election
Algorithm in Distributed Systems”, Indian Journal of
Computer Science and Engineering (IJCSE), vol. 2, No.
1, pp. 16 -21. March 2011

12. J. Makhijani, M.K. Niranjan, M.Motwani, A.K. Sachan,
A. Rajput, “An efficient protocol using smart interval
for coordinated checkpointing”, International
Conference on Advances in Information Technology
and Mobile Communication-AIM 2011

How to cite this article:

Manoj Kumar Niranjan and Mahesh Motwani (2018) 'An Intelligent Fault Tolerance Algorithm For Electing Coordinator In
Coordinated Checkpointing With Dual Coordinator And Smart Interval', International Journal of Current Advanced
Research, 07(3), pp. 11260-11264. DOI: http://dx.doi.org/10.24327/ijcar.2018.11264.1946

