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INTRODUCTION 
 

The ability  to machine  very complex features in hard and 
difficult to machine materials with negligible tool wear, 
reasonable accuracy and acceptable surface finish has made 
electrochemical machining (ECM) an 
traditional machining process. Many process parameters both 
controllable and uncontrollable determine the material removal 
rate, accuracy and surface texture. [1-6]. Statistical design has 
been used extensively to model the effect of 
parameters of ECM on output parameters such as surface 
roughness, material removal rate (MRR), overcut [5,7
Maximizing one output parameter usually affects another 
desirable output parameter. A variety of approaches such as 
goal programming [11], Particle swarm optimization [12
Desirability Approach [15, 16], Genetic algorithm has been 
employed to find a set of optimal solutions involving 
conflicting objective functions [7-9, 17].  In this paper a set of 
non-dominated solutions i.e. Pareto front is obtained using 
multi objective genetic algorithm. However, choosing a 
representative solution from a set of non-dominated solution is 
not easy. Clustering solutions in Pareto front has been used by 
many authors [18-20]. One common method of choosing the 
representative solution is to select the non dominated solution 
which is nearest to the cluster centroid [20]. 
 

Functional performance of engineering components in service 
is strongly influenced by surface roughness.  
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                             A B S T R A C T  
 

 

Coefficient of friction in service is strongly influenced by surface roughness parameters. 
The objective of this work is to maximize the surface roughness parameters S
minimize Sq, SHTp, Ssk to lower the coefficient of friction in lubricated case. 
genetic algorithm is used to find the Pareto front consisting of a number of non dominated 
solutions. The number of solutions found is large. Agglomerative hierarchical clustering 
method is used to obtain 3,4 and 5 clusters. Two linkage metho
are used to generate clusters with population 45 and 100. The Pareto optimal points closest 
to the cluster centroids are obtained. Complete linkage, population 45, cross over:0.8  
represents the population well. The cluster1 and cluster 2 (complete linkage, population 45, 
cross over:0.8) which have low values of Sq and Shtp 
high value of Sku and a low value of Ssk. 

 
 

The ability  to machine  very complex features in hard and 
difficult to machine materials with negligible tool wear, 
reasonable accuracy and acceptable surface finish has made 

 important non-
any process parameters both 

controllable and uncontrollable determine the material removal 
6]. Statistical design has 

been used extensively to model the effect of different process 
parameters of ECM on output parameters such as surface 
roughness, material removal rate (MRR), overcut [5,7-10] etc. 
Maximizing one output parameter usually affects another 
desirable output parameter. A variety of approaches such as 

programming [11], Particle swarm optimization [12-14], 
Desirability Approach [15, 16], Genetic algorithm has been 
employed to find a set of optimal solutions involving 

9, 17].  In this paper a set of 
ns i.e. Pareto front is obtained using 

multi objective genetic algorithm. However, choosing a 
dominated solution is 

not easy. Clustering solutions in Pareto front has been used by 
ethod of choosing the 

representative solution is to select the non dominated solution 
 

Functional performance of engineering components in service 
 

A single surface texture parameter is not sufficient to reflect 
true quality of the product [21].
necessary to characterize the functional property of a surface.  
For example friction and wear has been reported to be 
influenced by surface roughness parameters such as (R
(Rt,Rz), Rsk, Rku, RDelA,Wa [21]. Wear is reported [22] to be 
larger when the initial values of the amplitude parameters S
Sq and SHtp as well as rms. slope S
[23] that in case of dry wear test, coefficient of friction is low 
when roughness is high. In lubricated case, when roughness is 
low, then coefficient of friction is low. It is reported [23] that 
increase in parameter Rku led to decrease in friction in 
lubricated case and increase in friction for dry tests. Friction 
also observed to be lower when t
more negative in lubricated tests.
 

Based on the above reports it is decided to locate optimal 
process parameters for ECM namely applied potential, inter
electrode gap and machining time for low coefficient of 
friction for lubricated condition.
 

Objective 
 

The objective function for lubricated case
Ssk and Maximize Sku  
 

METHODOLOGY 
 

The first step is to develop mathematical models to predict the 
effect of process variables on surface roughness parameters
Sq, Ssk, Sku, SHTp.  To use the models to calculate the values of 
roughness parameters at any point in the allowable design 
space.  
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oefficient of friction in service is strongly influenced by surface roughness parameters. 
The objective of this work is to maximize the surface roughness parameters Sku and 

to lower the coefficient of friction in lubricated case. Multi objective 
genetic algorithm is used to find the Pareto front consisting of a number of non dominated 
solutions. The number of solutions found is large. Agglomerative hierarchical clustering 
method is used to obtain 3,4 and 5 clusters. Two linkage methods- centroid and complete 
are used to generate clusters with population 45 and 100. The Pareto optimal points closest 
to the cluster centroids are obtained. Complete linkage, population 45, cross over:0.8  

luster 2 (complete linkage, population 45, 
 can be further analyzed to select a 

A single surface texture parameter is not sufficient to reflect 
true quality of the product [21]. Combination of parameters is 

the functional property of a surface.  
For example friction and wear has been reported to be 
influenced by surface roughness parameters such as (Ra, Rq), 

[21]. Wear is reported [22] to be 
larger when the initial values of the amplitude parameters Sk, 

as well as rms. slope SDq are high.  It is reported 
[23] that in case of dry wear test, coefficient of friction is low 

lubricated case, when roughness is 
low, then coefficient of friction is low. It is reported [23] that 

led to decrease in friction in 
lubricated case and increase in friction for dry tests. Friction 
also observed to be lower when the parameter Rsk tends to be 
more negative in lubricated tests. 

Based on the above reports it is decided to locate optimal 
process parameters for ECM namely applied potential, inter-
electrode gap and machining time for low coefficient of 

icated condition. 

The objective function for lubricated case- Minimize Sq ,SHTp, 

The first step is to develop mathematical models to predict the 
effect of process variables on surface roughness parameters- 

.  To use the models to calculate the values of 
roughness parameters at any point in the allowable design 
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The second step is to use these models to generate optimum 
levels of process parameters (Pareto front) for minimum 
coefficient of friction for lubricated condition using multi 
objective genetic algorithm in MATLAB environment. 
 

The third step is to use clustering methods for obtaining 
representative solutions from the large number of solutions in 
the Pareto front. 
 

Experiment Details 
 

The experimental work and mathematical models used in this 
work are reported in ref.16. The essential details are presented 
here. 
 

The matrix selected for conducting the experiments is eighteen 
points face centered composite design. The actual and coded 
values of the different variables are listed in Table-1. The 
design matrix is shown in Table-2.  
 

Table 1 ECM process Variables and Their Levels 
 

Variables Symbol 
Low level Medium level High level 

Actual Coded Actual Coded Actual Coded 
VOLTAGE(volt) V 15 -1 20 0 25 +1 

TIME(min) T 2 -1 3 0 4 +1 
GAP(mm) G 0.64 -1 0.96 0 1.28 +1 

 

Table 2 Design matrix of three process parameter for surface 
roughness 

 

SL NO Voltage Machining time Inter electrode gap 
1 -1 -1 -1 
2 1 -1 -1 
3 -1 1 -1 
4 1 1 -1 
5 -1 -1 1 
6 1 -1 1 
7 -1 1 1 
8 1 1 1 
9 -1 0 0 

10 1 0 0 
11 0 -1 0 
12 0 1 0 
13 0 0 -1 
14 0 0 1 
15 0 0 0 
16 0 0 0 
17 0 0 0 
18 0 0 0 

 

ECM machine model ECMAC - II, manufactured by 
MetaTech Industries, Pune, is used with a round shaped tool 
made of copper. Electrolyte used is a mixture of NaCl and 
NaNO3 solution (125 grams of NaCl and 250 grams of NaNO3 
/ litre of tap water). Work piece material selected is SG Iron 
450/12 grade received courtesy M/s. Hindustan Malleables & 
Forging Ltd., Dhanbad, India. The chemical composition of the 
material is given in Table 3.The material has pearlitic matrix. 
Hardness (Brinell)-196. 
 

Table 3 Chemical Composition of SG Iron 450 grades. [45] 
 

C Si Mn P S Cr Mo Cu Mg Ti 
3.365 2.393 0.238 0.072 < 0.150 0.0072 < 0.010 0.37 0.085 0.032 

Zn Fe Others(Bi,Ce,Co,La,W,V,Ta,Sn,B,As,Zr,Sb,etc..) 
0.027 90.75 2.6608 
 

Developing the Models 
 

To analyze the effects of the process variables on the surface 
roughness parameters such as Sq, Ssk, Sku, SHtp, the following 
second order polynomial is used. 
 

Y = Bo + B1T+ B2V +B3G+ B11T2 + B22V2 +B33G2 
+B12TV+B13TG+B23VG                                      . . . . . . . (1) 
 

Where, B's are the regression coefficients. V, T, G are the 
controllable process parameters in coded form. To check the 
adequacy of the statistical regression models analysis of 
variance are carried out. F-ratios of the models developed are 
calculated and are compared with the corresponding tabulated 
values for 95% level of confidence. The goodness of fit of the 
models are tested by calculating R2, R2

(adjusted) & R2
(predicted) . 

Design Expert [24] is used to develop the models. The 
coefficients of the models developed and the model statistics 
for the models are given in Table-4. All the models are 
statistically adequate.  To validate the models further one set 
of experiment are carried out at levels different than those of 
design matrix (table 5).  
            

  Table 4 The Coefficients for surface roughness parameter 
 

Co-efficient Sq Sku Ssk SHTp 

B0 11.55988 2.75464 -0.31755 20.0088 
B1 2.562 0.165 0.16968 6.042 
B2 0.932 -0.227 -0.21158 1.198 
B3 -2.017 0.045 -0.038599 -4.892 
B12 2.4775 -0.11125 0.080125 5.3025 
B13 0.05 -0.04125 0.013675 0.7525 
B23 0.355 -0.39125 -0.229375 2.1225 
B11 3.067738095 -0.306786 0.005351905 8.357380952 
B22 -0.382261905 0.573214 0.182851905 -3.742619048 
B33 -2.997261905 -0.336786 0.280946905 -3.192619048 

F ratio 0.052 0.075 0.068 0.16 
�� 8.32 0.021 0.051 24.28 
�� 0.8819079 0.9573 0.921507 0.921485 

��(adj) 0.7490542 0.9092 0.833203 0.833155 
��(pred) 0.7613867 0.8242 0.819541 0.783204 

 

Table 5 Validation run 
 

Process 
parameter 

Coded Actual Responses 
From 

experiment 
From 
model 

VOLTAGE 
(v) 

-0.6 17 
Sq 10 10.4460 
Sku 2.79 2.8144 

TIME (min) -0.5 2.5 Ssk -0.207 -0.2006 
GAP (mm) 0.28125 1.05 SHTp 17 17.3945 

 

For locating optimum levels of process parameters for 
minimum coefficient of friction for lubricated condition 
genetic algorithm, a multi objective optimization technique is 
used. The four objective functions for lubricated case Sq, Sku, 
Ssk, SHTp are constructed using the coefficients given in table 4.  
 

Table 6 Upper and lower limit of surface parameters 
                                      In the design space 
 

Surface Roughness 
Parameter 

Lower Limit Upper Limit 

Sq 5.35 20.434 
Sku 1.8267 3.747 
Ssk -0.6612 0.675 

SHTp 4.795 37.687 
 

Matlab [25] is used to generate the Pareto front. The following 
parameters are selected for finding the Pareto front. Population 
size two sets are used: 45 and 100; Selection function: 
tournament; two Cross over functions: 0.8 and 0.6; Mutation 
function: constraint dependent; Migration: 0.2; Distance 
measure function: distance crowding; Pareto front population: 
0.35. For each population 5 sets of results are obtained based 
on random distribution.  So for population of 45, 80 sets of 
results are obtained and for population of 100, 175 sets of 
results are obtained. For choosing representative solutions 
from the large set of Pareto optimization result clustering 
method is applied. Minitab 18 [26] is used to generate the 
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clusters. In this paper a standard agglomerative hierarchical 
clustering technique with centroid method and complete 
linkage method are used. The numbers of clusters considered 
are 3, 4 and 5. The Pareto optimal point closest to the cluster 
centroid is obtained and given in tables 7-15.   
 

RESULTS AND DISCUSSIONS 
 

Table 7 3 clusters with centroid linkage (population 45, cross 
over function 0.8) 

   

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 15 2.8396 0.397144 0.84417 

Cluster2 49 14.6352 0.498108 1.05384 

Cluster3 16 1.6856 0.291102 0.56894 
          

Pareto optimal point closest to cluster centroid. 
 
 
  
 
       

Table 8 4 clusters with centroid linkage (population 45, cross 
over function 0.8) 

 

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 14 2.0761 0.354904 0.77007 

Cluster2 49 14.6352 0.498108 1.05384 

Cluster3 16 1.6856 0.291102 0.56894 

Cluster4 1 0.0000 0.000000 0.00000 
 

Pareto optimal point closest to cluster centroid 
    
 
 
 
 

Table 9 5 clusters with centroid linkage (population 45, cross 
over function 0.8) 

 

    Number of 
observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 13 1.4375 0.311919 0.58616 

Cluster2 49 14.6352 0.498108 1.05384 

Cluster3 16 1.6856 0.291102 0.56894 

Cluster4 1 0.0000 0.000000 0.00000 

Cluster5 1 0.0000 0.000000 0.00000 
 

Pareto optimal point closest to cluster centroid 
 
 

 
 
 

Table 10 3 clusters with complete linkage (population 45, 
cross over function 0.8)    

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 17 5.1753 0.505113 1.14605 

Cluster2 47 12.5516 0.470265 0.92923 

Cluster3 16 1.6856 0.291102 0.56894 

Pareto optimal point closest to cluster centroid. 
 
 
 

 
Table 11 4 clusters with complete linkage (population 45, 

cross over function 0.8) 
 

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 17 5.17527 0.505113 1.14605 

Cluster2 29 2.64841 0.277244 0.66926 

Cluster3 16 1.68564 0.291102 0.56894 

Cluster4 18 3.59998 0.412999 0.83383 
 

Pareto optimal point closest to cluster centroid 
    
         

 
 
 

Table 12 5 clusters with complete linkage (population 45, 
cross over function 0.8) 

 

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 14 2.07610 0.354904 0.770072 

Cluster2 29 2.64841 0.277244 0.669260 

Cluster3 16 1.68564 0.291102 0.568937 

Cluster4 18 3.59998 0.412999 0.833832 

Cluster5 3 0.28264 0.297511 0.394576 
 

Pareto optimal point closest to cluster centroid 
 
 
 
 
 
 

Table 13 3 clusters with complete linkage (population 100, 
cross over function 0.8) 

  

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 43 15.0277 0.554071 1.17082 

Cluster2 103 23.7100 0.455306 0.82329 

Cluster3 29 2.4490 0.256935 0.75590 
 

Pareto optimal point closest to cluster centroid. 
 
 
 

 
Table 14 4 clusters with complete linkage (population 100, 

cross over function 0.8) 
        

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 33 5.1650 0.370557 0.617876 

Cluster2 103 23.7100 0.455306 0.823288 

Cluster3 29 2.4490 0.256935 0.755899 

Cluster4 10 0.8512 0.262023 0.492615 

 

Cluster V T G Sq Sku Ssk Shtp 
Cluster1 -0.97526 0.938669 0.870361 6.470658 2.19516 -0.60856 9.456993 
Cluster 2 0.128561 -0.75225 0.711175 7.647237 3.34388 0.197843 11.23132 
Cluster 3 0.08798 0.971285 -0.10921 12.71175 3.11053 -0.29697 18.95483 
Cluster 4 -0.9266 -0.03025 0.999725 6.791637 2.10105 -0.2249 12.85199 

 

 

Cluster V T G Sq Sku Ssk Shtp 
Cluster1 -0.97526 0.938669 0.870361 6.470658 2.19516 -0.60856 9.456993 
Cluster 2 0.128561 -0.75225 0.711175 7.647237 3.34388 0.197843 11.23132 
Cluster 3 0.08798 0.971285 -0.10921 12.71175 3.11053 -0.29697 18.95483 

 

 

Cluster V T G Sq Sku Ssk Shtp 
Cluster1 -0.97526 0.938669 0.870361 6.470658 2.19516 -0.60856 9.456993
Cluster 2 0.128561 -0.75225 0.711175 7.647237 3.34388 0.197843 11.23132
Cluster 3 0.08798 0.971285 -0.10921 12.71175 3.11053 -0.29697 18.95483
Cluster 4 -0.16134 0.668552 0.998909 6.634894 2.29074 -0.32676 11.03159
Cluster 5 -0.9266 -0.03025 0.999725 6.791637 2.10105 -0.2249 12.85199

 

Cluster V T G Sq Sku Ssk Shtp 
Cluster1 -0.99804 0.76007 0.998912 5.880925 1.98035 -0.54353 9.818269 
Cluster 2 0.224842 -0.92998 0.775492 6.961643 3.61368 0.365856 9.216878 
Cluster 3 0.08798 0.971285 -0.10921 12.71175 3.11053 -0.29697 18.95483 

 

Cluster V T G Sq Sku Ssk Shtp 
Cluster1 -0.99804 0.76007 0.998912 5.880925 1.98035 -0.54353 9.818269 
Cluster 2 0.224842 -0.92998 0.775492 6.961643 3.61368 0.365856 9.216878 
Cluster 3 0.08798 0.971285 -0.10921 12.71175 3.11053 -0.29697 18.95483 
Cluster 4 0.38848 -0.65294 0.376625 10.35341 3.25261 0.028677 17.18728 

 

Cluster V T G Sq Sku Ssk Shtp 

Cluster1 -0.97526 0.938669 0.870361 6.470658 2.19516 -0.60856 9.456993 

Cluster 2 0.224842 -0.92998 0.775492 6.961643 3.61368 0.365856 9.216878 

Cluster 3 0.08798 0.971285 -0.10921 12.71175 3.11053 -0.29697 18.95483 

Cluster 4 0.38848 -0.65294 0.376625 10.35341 3.25261 0.028677 17.18728 

Cluster 5 -0.60973 -0.15337 0.55063 9.151852 2.54744 -0.29607 15.56235 

 

 

Cluster V T G Sq Sku Ssk Shtp 
Cluster1 -0.51223 0.932189 0.800339 7.116287 2.47455 -0.50733 9.754073 
Cluster 2 0.251945 -0.8292 0.600708 8.384413 3.47648 0.204483 12.35301 

Cluster 3 -0.02138 0.963365 -0.17742 12.20159 3.11469 -0.30201 17.86244 
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Pareto optimal point closest to cluster centroid 
 
 
 
 
 

Table 15 5 clusters with complete linkage (population 100, 
cross over function 0.8) 

 

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 33 5.16498 0.370557 0.617876 

Cluster2 56 5.40757 0.280384 0.732989 

Cluster3 47 6.95932 0.362647 0.653771 

Cluster4 29 2.44896 0.256935 0.755899 

Cluster5 10 0.85120 0.262023 0.492615 
 

Pareto optimal point closest to cluster centroid 
 
 
 
 
 
 

Table 16 3 cluster with complete linkage (population 45, cross 
over function 0.6) 

 

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 52 21.3794 0.605172 1.08828 

Cluster2 16 1.2379 0.264513 0.48224 

Cluster3 12 1.2896 0.298715 0.61214 
 

Pareto optimal point closest to cluster centroid 
 
 
 
 
 

Table 17 4 clusters with complete linkage (population 45, 
cross over function 0.6) 

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 42 14.4299 0.553949 1.05341 

Cluster2 16 1.2379 0.264513 0.48224 

Cluster3 10 0.6733 0.236734 0.40009 

Cluster4 12 1.2896 0.298715 0.61214 
 

Pareto optimal point closest to cluster centroid 
 
 
 
 
 

Table18 5 clusters with complete linkage (population 45, cross 
over function 0.6) 

 
Number of 

observations 

Within 
cluster sum 
of squares 

Average 
distance 

from 
centroid 

Maximum 
distance 

from 
centroid 

Cluster1 34 7.12923 0.433715 0.736863 

Cluster2 16 1.23787 0.264513 0.482236 

Cluster3 10 0.67327 0.236734 0.400092 

Cluster4 12 1.28959 0.298715 0.612142 

Cluster5 8 2.53296 0.541778 0.739072 

 

Pareto optimal point closest to cluster centroid 
 
 
 
 
 
 

When the centroid and complete linkage are compared two 
interesting trends are observed Table (9 &12). The cluster 1 
and 3 are same. Second cluster in centroid case which contains 
49 elements are shown as two clusters (29 elements and 18 
elements) in complete linkage. Centroid linkage (table 9) has 
two clusters having 1 element each. The Pareto optimal point 
closest to the centroids for clusters 4 &5 (table 9) are quite 
close. Where as in case of complete linkage the Pareto optimal 
point closest to the centroids are well dispersed (table 12). 
When population is increased to 100 little change in Pareto 
optimal points closest to the centroids are observed when 
compared to the results obtained with population of 45 (table 
12 &15). Effect of changing the cross over function from 0.8 
to 0.6 is studied also (table 12 & 18).  The trends observed are 
similar. If Sku and Ssk are considered then it is observed that is 
Ssk is in the range -0.6 to -0.6 then Sku is in the range 2.2-2.3. 
If Sku is in the range 3.37-3.6 the Ssk is in the range .03-0.36. Sq 
and Shtp show similar trends. As Sq decreases Shtp decreases.  It 
seems the case: complete linkage, population 45, cross 
over:0.8 (Table 12) represents the population well. The 
cluster1 and cluster 2 (complete linkage, population 45, cross 
over:0.8) which have low values of Sq and Shtp can be further 
analyzed to select a high value of Sku and a low value of Ssk. 
 

CONCLUSIONS 
 

The objective of this work is to minimize the surface 
roughness parameters Sq, SHTp , Ssk and maximize Sku to lower 
the coefficient of friction in lubricated case.  Multi objective 
genetic algorithm is used to find the Pareto front consisting of 
a number of non dominated solutions. The number of solutions 
found is large. Agglomerative hierarchical clustering method is 
used to obtain a number of clusters.  Representative solutions 
are selected by choosing the non dominated solution which is 
nearest to the cluster centroid. Complete linkage, population 
45, cross over:0.8 represents the population well. The cluster1 
and cluster 2 (complete linkage, population 45, cross over:0.8 ) 
which have low values of Sq and Shtp can be further analyzed to 
select a high value of Sku and a low value of Ssk. 
 

Roughness Parameters 
 

All parameters with S is  3D extension of R roughness profile 
parameter: for example Sq is the 3D extension of Rq 

RDelA : Average Slope of the Profile.  
Rt  : Maximum Height of Profile. 
Sa: Arithmetic Mean Deviation of the Surface, µm 
SDq :   Root mean square gradient of the surface 
SHtp: Surface section height difference (20% - 80%) 
Sku: Kurtosis of the Topography Height Distribution. 
Sq: Root-Mean-Square (RMS) Deviation of the Surface,µm 
Sp: Surface section height difference (20% - 80%) 
Ssk: Skewness of the Topography Height Distribution. 
Sz: Ten Point Height of the Surface,µm. 
Wa  : Mean Value of the Waviness of the Unfiltered Profile. 
 

Experimental Variables 
 

T : Time of machining (minutes) 

Cluster V T G Sq Sku Ssk Shtp 
Cluster1 -0.74002 0.936349 0.748625 7.196147 2.42517 -0.57331 9.89996 
Cluster 2 0.251945 -0.8292 0.600708 8.384413 3.47648 0.204483 12.35301 
Cluster 3 -0.02138 0.963365 -0.17742 12.20159 3.11469 -0.30201 17.86244 
Cluster 4 -0.31038 -0.05957 0.942502 6.451072 2.46465 -0.1329 11.16594 

 

Cluster V T G Sq Sku Ssk Shtp 

Cluster1 -0.74002 0.936349 0.748625 7.196147 2.42517 -0.57331 9.89996 

Cluster 2 0.034209 -0.86372 0.897901 5.986445 3.45794 0.375203 7.652399 

Cluster 3 0.349626 -0.77345 0.158849 10.77425 3.36783 0.023694 17.46678 

Cluster 4 -0.02138 0.963365 -0.17742 12.20159 3.11469 -0.30201 17.86244 

Cluster 5 -0.31038 -0.05957 0.942502 6.451072 2.46465 -0.1329 11.16594 

 

Cluster V T G Sq Sku Ssk Shtp 
Cluster1 0.409319 -0.99062 0.662845 7.946185 3.73084 0.361523 11.03765 
Cluster 2 -0.9981 0.990087 0.753339 7.1653 2.31339 -0.642 10.1014 
Cluster 3 0.058386 0.992969 -0.11689 12.56536 3.13239 -0.2979 18.47358 

 

Cluster V T G Sq Sku Ssk Shtp 
Cluster1 0.161251 -0.98672 0.995853 5.044897 3.66168 0.551765 5.528087 
Cluster 2 -0.9981 0.990087 0.753339 7.1653 2.31339 -0.642 10.1014 
Cluster 3 0.562784 -0.83927 -0.06411 11.88601 3.37332 0.038957 20.29753 
Cluster 4 0.058386 0.992969 -0.11689 12.56536 3.13239 -0.2979 18.47358 

 

Cluster V T G Sq Sku Ssk Shtp 

Cluster1 0.409319 -0.99062 0.662845 7.946185 3.73084 0.361523 11.03765 

Cluster 2 -0.9981 0.990087 0.753339 7.1653 2.31339 -0.642 10.1014 

Cluster 3 0.562784 -0.83927 -0.06411 11.88601 3.37332 0.038957 20.29753 

Cluster 4 0.058386 0.992969 -0.11689 12.56536 3.13239 -0.2979 18.47358 

Cluster 5 -0.27052 0.251129 0.500069 9.412603 2.56899 -0.38981 15.61056 
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V : Applied potential(volts) 
G : Inter electrode gap(mm) 
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