Research Article

# A GENERALIZATION OF INDEPENDENT RESOLVING PARTITION OF A GRAPH 

# Hemalathaa $\mathbf{S}^{\boldsymbol{*}}$, Subramanian $\mathbf{A}^{\mathbf{2}}$, Aristotle $\mathbf{P}^{\mathbf{3}}$ and Swaminathan $\mathbf{V}^{4}$ 

1,2Department of Mathematics, The M.D.T. Hindu College, Thirunelveli- 627010, Tamilnadu, India<br>${ }^{3}$ Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai - 630561, Tamilnadu, India<br>${ }^{4}$ Ramanujan Research Centre in Mathematics, Saraswathi Narayan College, Madurai-625022, Tamilnadu, India

## ARTICLE INFO

## Article History:

Received $25^{\text {th }}$ November, 2017
Received in revised form $13^{\text {th }}$
December, 2017
Accepted $10^{\text {th }}$ January, 2018
Published online $28^{\text {th }}$ February, 2018

## Key words:

Resolving partition, Partition dimension, Isolate vertex resolving partition.


#### Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple connected graph. A partition $\Pi=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3} \ldots ., \mathrm{V}_{\mathrm{k}}\right\}$ is called a resolving partition of $G$ if for any $u \in V(G)$, the code of $u$ with respect to п (denoted by $\left.\mathrm{c}_{\mathrm{I}}(\mathrm{u})\right)$ namely $\left(\mathrm{d}\left(\mathrm{u}, \mathrm{V}_{1}\right), \mathrm{d}\left(\mathrm{u}, \mathrm{V}_{2}\right), \ldots, \mathrm{d}\left(\mathrm{u}, \mathrm{V}_{\mathrm{k}}\right)\right.$ ) is distinct for different $\mathrm{u} \in \mathrm{V}(\mathrm{G})$ where $d\left(u, V_{i}\right)=\min \left\{d(u, x) / x \in V_{i}\right\}$. The minimum cardinality of a resolving partition of a graph G is called the partition dimension of G and is denoted by pd (G)[2]. Several types of resolving partition have been considered like connected resolving partition [7], metric chromatic number of a graph (that is, independent resolving partition) [4], equivalence resolving partition [6] etc. A new type of resolving partition called isolate vertex resolving partition was introduced in [5].This partition is a generalization of an independent resolving partition. A detailed study of this partition is done in this paper.


Copyright $\odot 2018$ Hemalathaa $\boldsymbol{S}$ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## INTRODUCTION

Definition: [2] Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple, finite, connected and undirected graph. A partition $\Pi=\left\{\mathrm{V}_{1}, \mathrm{~V} 2, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ of V $(\mathrm{G})$ is called a resolving partition of $G$ if the code $\mathrm{c}_{\Pi}(\mathrm{u})=\left(\mathrm{d}\left(\mathrm{u}, \mathrm{V}_{1}\right), \mathrm{d}\left(\mathrm{u}, \mathrm{V}_{2}\right), \ldots, \mathrm{d}\left(\mathrm{u}, \mathrm{V}_{\mathrm{k}}\right)\right)$ is different for different $u \in V(G)$ where $d\left(u, V_{i}\right)=\min \left\{d(u, x) / x \in V_{i}\right\}$. The minimum cardinality of a resolving partition of a graph $G$ is called the partition dimension of G and is denoted by pd (G).
Definition: [5] Let $G=(V, E)$ be a simple, finite, connected and undirected graph. Let $\Pi=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ be a partition of $\mathrm{V}(\mathrm{G})$. If each $\left\langle\mathrm{V}_{\mathrm{i}}\right\rangle$ contains an isolate and if $\Pi$ is a resolving partition, then $\Pi$ is called an isolate vertex resolving partition. The trivial partition namely
$\Pi=\left\{\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{u}_{2}\right\}, \ldots \ldots \ldots \ldots . .,\left\{\mathrm{u}_{n}\right\}\right\}$ where $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ is an isolate vertex resolving partition. The minimum cardinality of an isolate vertex resolving partition is called the isolate vertex partition dimension of $G$ and is denoted by $p d_{i s}(\mathrm{G})$.
Definition: A double star is a graph obtained by taking two stars and joining the vertices of maximum degrees with an edge.

Remark: [5] Every independent resolving partition is an isolate vertex resolving partition. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{ipd}(\mathrm{G}) \leq$ $\mathrm{pd}(\mathrm{G})$.

[^0]
## Characterizations

Lemma: Let $G$ be a connected graph with $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}=\mid \mathrm{V}$ (G)|. Let a pendent vertex $x$ be attached at a single vertex of $G$. Let H be the resulting graph. Let $\mathrm{G}=<\mathrm{V}_{1}>+<\mathrm{V}_{2}>$ where $<\mathrm{V}_{1}>$ and $\left\langle\mathrm{V}_{2}>\right.$ are connected and $\left.\operatorname{diam}\left(<\mathrm{V}_{1}\right\rangle\right)$, $\left.\operatorname{diam}\left(<\mathrm{V}_{2}\right\rangle\right)$ less than or equal to 2 . Let x be attached to $\mathrm{u}_{1} \in \mathrm{~V}_{1}$. Then $\operatorname{pd}_{\mathrm{is}}(\mathrm{H})=|\mathrm{V}(\mathrm{H})|-1$ if and only if any $\mathrm{pd}_{\mathrm{is}}$ - partition $\Pi$ of H containing a set $W$ with $x \in W$ and $|W| \geq 3$, there exist $y, z \in W$ such that y and z are non-adjacent.

Proof: Suppose the condition of the hypothesis in the theorem is satisfied. Suppose $\operatorname{pd}_{\mathrm{is}}(\mathrm{H})=|\mathrm{V}(\mathrm{H})|-1$. Then no $\mathrm{pd}_{\mathrm{is}}$ - partition of $H$ can contain a set $W$ with $|W| \geq 3$. Conversely, suppose any $\mathrm{pd}_{\mathrm{is}}$ - partition $\Pi$ of $H$ containing a set $W$ with $\mathrm{x} \in \mathrm{W}$, and $|\mathrm{W}| \geq 3$, then there exist $y, z \in W$ such that $y$ and $z$ are nonadjacent. Then $\mathrm{pd}_{\mathrm{is}}(\mathrm{H}) \leq|\mathrm{V}(\mathrm{H})|-2$. Let $\Pi=\left\{\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots, \mathrm{~W}_{\mathrm{r}}\right\}$ be a $\mathrm{pd}_{\mathrm{is}}$ - partition of H , where $\mathrm{r} \leq|\mathrm{V}(\mathrm{H})|-2$. Let $\left|\mathrm{W}_{\mathrm{i}}\right| \geq 3$. Let $\mathrm{x} \in \mathrm{W}_{\mathrm{i}}$. Let $\mathrm{u}_{1}, \mathrm{u}_{2} \in \mathrm{~W}_{\mathrm{i}} \cap \mathrm{V}(\mathrm{G})$ be non-adjacent. Then $\prod_{1}=$ $\left\{W_{1}, W_{2}, \ldots\left\{u_{1}, u_{2}\right\}\right.$, all singletons omitting $\left.x\right\}$. $\left\{x, u_{1}, u_{2}\right\}$ is an element of $\Pi$ and hence $u_{1}, u_{2}$ are resolved by some $W_{i} \subseteq$ $\mathrm{V}(\mathrm{G})$. Therefore $\Pi_{1}$ is an isolate resolving partition of G . Therefore $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq\left|\Pi_{1}\right| \leq \mathrm{n}-1$, a contradiction. Therefore, $\mathrm{pd}_{\mathrm{is}}$ $(\mathrm{H})=|\mathrm{V}(\mathrm{H})|-1$.

Remark: The condition that there exist $y, z \in W$ with $|W| \geq 3$, $x \in \mathrm{~W}$ and $\mathrm{y}, \mathrm{z}$ are non-adjacent cannot be dropped.
For,


Let $\Pi=\left\{\left\{\mathrm{x}, \mathrm{u}_{4}, \mathrm{u}_{5}\right\},\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{u}_{2}\right\},\left\{\mathrm{u}_{3}\right\}\right\}$.Then $\mathrm{c}_{\Pi}(\mathrm{x})=(0,2,2$, $1), c_{\Pi}\left(u_{4}\right)=(0,1,1,1), c_{\Pi}\left(u_{5}\right)=(0,1,1,2)$.

Lemma: Let G be a connected graph with $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}=\mid \mathrm{V}$ (G)|. Let a pendent vertex $x$ be attached at a single vertex of $G$. Let H be the resulting graph. Let $\mathrm{G}=\left\langle\mathrm{V}_{1}\right\rangle+\left\langle\mathrm{V}_{2}\right\rangle$ where $<\mathrm{V}_{1}>$ and $<\mathrm{V}_{2}>$ are connected and $\operatorname{diam}\left(<\mathrm{V}_{1}>\right)$, $\operatorname{diam}\left(<\mathrm{V}_{2}>\right)$ less than or equal to 2 and neither $\left\langle\mathrm{V}_{1}\right\rangle$ nor $\left\langle\mathrm{V}_{2}\right\rangle$ contains a $K_{3}$ with a pendent vertex. Let $x$ be attached to $u_{1} \in V_{1}$. Then $\operatorname{pd}_{\text {is }}(\mathrm{H})=|\mathrm{V}(\mathrm{H})|-1$ if and only if any $\mathrm{pd}_{\mathrm{is}}$ - partition $\Pi$ of H containing exactly two two-elements sets $\mathrm{W}_{1}, \mathrm{~W}_{2}$ each with cardinality 2 such that $\mathrm{x} \in \mathrm{W}_{1}$ and x is adjacent with exactly one element, (say) $\mathrm{u}_{3}$ of $\mathrm{W}_{2}=\left\{\mathrm{u}_{2}, \mathrm{u}_{3}\right\} \subseteq \mathrm{V}(\mathrm{G})$, then either $\mathrm{u}_{2}$ is adjacent with $u_{1} \in W_{1}-\{x\}$ or $u_{3}$ is adjacent with $u_{1}$ or both $u_{2}$ and $u_{3}$ are adjacent with $u_{1}$.
Proof. Let $x \notin \mathrm{~W}_{1} \cup \mathrm{~W}_{2}$. Then $\mathrm{W}_{1}, \mathrm{~W} 2 \subseteq \mathrm{~V}$ (G). Since $\Pi$ contains exactly two two- element sets, $\{x\} \in \Pi$. Since x is adjacent exactly one vertex of $\mathrm{V}(\mathrm{G})$, both $\mathrm{W}_{1}$ and $\mathrm{W}_{2}$ cannot be resolved by $x$. Therefore, atleast one of $\mathrm{W}_{1}, \mathrm{~W}_{2}$ is resolved by a set $\mathrm{W}_{3} \subseteq \mathrm{~V}(\mathrm{G})$. Therefore, $\Pi-\{x\}$ is an isolate vertex resolving partition of G . Therefore, $\Pi-\{x\} \leq \mathrm{n}-2$, a contradiction.
Let $x \in \mathrm{~W}_{1}$. (similar proof if $x \in \mathrm{~W}_{2}$ ). Let $\mathrm{W}_{1}=\left\{x_{1}, \mathrm{u}_{1}\right\}$, $\mathrm{W}_{2}=\left\{\mathrm{u}_{2}, \mathrm{u}_{3}\right\}$.

Case (i): $x$ is not adjacent with $u_{2}$ as well as $u_{3}$.
Then either $W_{2}$ is resolved by $\mathrm{u}_{1}$ or by any set in $\Pi$ which contains only elements of $\mathrm{V}(\mathrm{G})$. In any case, $\Pi-\{x\}$ is an isolate vertex resolving partition of G , a contradiction.
Case (ii): $x$ is adjacent with exactly one of $\mathrm{u}_{2}, \mathrm{u}_{3}$ (say) $\mathrm{u}_{3}$.
That is $x$ is adjacent with $u_{3}, x$ is not adjacent with $u_{2}$. By hypothesis, either $u_{1}$ adjacent with $u_{2}$ or adjacent with $u_{3}$ or both.

Subcase (i): $u_{1}$ is adjacent with $u_{2}$.
Then $\left\{\mathrm{u}_{2}, \mathrm{u}_{3}\right\}$ is not resolved by $\left\{\mathrm{x}, \mathrm{u}_{1}\right\}$. Therefore there exist some set of $\Pi$ containing only elements of $G$ which resolves $\left\{\mathrm{u}_{2}, \mathrm{u}_{3}\right\}$. Therefore, $\Pi-\{x\}$ is an isolate resolving partition of G, a contradiction.

Subcase (ii): $u_{1}$ is not adjacent with $u_{2}$. Then $u_{1}$ is adjacent with $\mathrm{u}_{3}$. Therefore, $\mathrm{W}_{1^{-}}\{x\}$ resolves $\mathrm{W}_{2}$. Therefore, $\Pi-\{x\}$ is an isolate resolving partition of G , a contradiction.
Remark: The condition that either $\mathrm{u}_{2}$ is adjacent with $\mathrm{u}_{1} \in \mathrm{~W}_{1^{-}}$ $\{x\}$ or $u_{3}$ is adjacent with $u_{1}$ or both $u_{2}$ and $u_{3}$ are adjacent with $\mathrm{u}_{1}$ cannot be dropped.
For,


Let $\Pi=\left\{\left\{\mathrm{u}_{1}, \mathrm{x}\right\},\left\{\mathrm{u}_{2}, \mathrm{u}_{3}\right\},\left\{\mathrm{u}_{4}\right\},\left\{\mathrm{u}_{5}\right\},\left\{\mathrm{u}_{6}\right\},\left\{\mathrm{u}_{7}\right\}\right\}$. Then $\mathrm{c}_{\Pi}\left(\mathrm{u}_{1}\right)$ $=(0,2,1, \ldots), c_{\Pi}(x)=(0,1,2, \ldots), c_{\Pi}\left(u_{2}\right)=(2,0,1, \ldots), c_{\Pi}(x)$ $=(1,0,1, \ldots) . \Pi$ is an isolate resolving partition of H . Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{H}) \leq|\Pi|=6=8-2=|\mathrm{V}(\mathrm{H})|-2$.


Let $\Pi=\left\{\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{u}_{2}, \mathrm{u}_{3}\right\},\left\{\mathrm{u}_{4}\right\},\left\{\mathrm{u}_{5}\right\},\left\{\mathrm{u}_{6}\right\},\left\{\mathrm{u}_{7}\right\}\right\}$. Then $\Pi$ is not an isolate resolving partition of G .
In fact, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=|\mathrm{V}(\mathrm{G})|=7$. In this example, $\mathrm{u}_{1}$ and $\mathrm{u}_{3}$ are not adjacent with $\mathrm{u}_{2}$.

Remark: Let $G$ be a connected graph. If two independent vertices say $x_{1}, x_{2}$ are resolved by a vertex of $G$ and for any two independent vertices say $\mathrm{x}_{3}, \mathrm{x}_{4}$ with $\left\{\mathrm{x}_{3}, \mathrm{x}_{4}\right\} \neq\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$, $x_{3}$ and $x_{4}$ are not resolved by any vertex of $G$, then $\mathrm{pd}_{\mathrm{is}}(G) \leq$ $\mathrm{n}-1$

Proof: Obvious.
Lemma: Let G be a tree. $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$ if and only if $\mathrm{G}=\mathrm{P}_{4}$.
Proof: Let G be a tree and let $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$. Then $\operatorname{diam}(\mathrm{G})$ $\leq 3$. If diam $(G)=1$ then $G=K_{2}$ and $\operatorname{pd}_{\mathrm{is}}(\mathrm{G})=2$, a contradiction. If $\operatorname{diam}(\mathrm{G})=2$, then G is a star and $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=$ $|\mathrm{V}(\mathrm{G})|$, a contradiction. Let $\operatorname{diam}(\mathrm{G})=3$. Then G is a double star $D_{r, s}$. If $r=s=1$, then $G=P_{4}$ and
$\operatorname{pd}_{\mathrm{is}}(\mathrm{G})=3=|\mathrm{V}(\mathrm{G})|-1$. If r (or) $\mathrm{s} \geq 2$, then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=3=$ $|\mathrm{V}(\mathrm{G})|-2$, a contradiction. Therefore, if G is a tree and $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})$ $=\mathrm{n}-1$, then $\mathrm{G}=\mathrm{P}_{4}$.
The converse is obvious.
Lemma: Let G be a unicyclic graph. Then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$ if and only if $\mathrm{G}=\mathrm{K}_{3}$ with one or more pendent vertices at a single vertex or $\mathrm{C}_{4}$ with a pendent vertex.
Proof: Let G be a unicyclic graph with $\operatorname{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$. Suppose diam $(G) \geq 4$. Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be an induced path of length 4 in G . Then $\Pi=\left\{\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{5}\right\}\right.$, singletons $\}$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})$ $\leq \mathrm{n}-2$, a contradiction. Therefore, $\operatorname{diam}(\mathrm{G}) \leq 3$. If G contains $C_{n}(n \geq 8)$, then $\operatorname{diam}(G) \geq 4$, a contradiction. Suppose $G$ contains $\mathrm{C}_{7}$. Then there is no path attached at any vertex of $\mathrm{C}_{7}$, since $\operatorname{diam}\left(\mathrm{C}_{7}\right)=3$. If $\mathrm{G}=\mathrm{C}_{7}$, then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq 5$, a contradiction. Suppose $G$ contains $\mathrm{C}_{6}$. Then also there is no path attached at any vertex of $\mathrm{C}_{6} . \mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6}\right) \leq 4$. Suppose G contains $\mathrm{C}_{5}$. If $\mathrm{G}=\mathrm{C}_{5}$, then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=3$, a contradiction. If G contains $\mathrm{C}_{5}$ and a pendant vertex, then $\operatorname{diam}(\mathrm{G})=3$ and $\operatorname{pd}_{\mathrm{is}}(\mathrm{G}) \leq 4$, a contradiction. Suppose $G$ contains $\mathrm{C}_{4}$. If $G=\mathrm{C}_{4}$, then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=4$, a contradiction. If $G$ contains $\mathrm{C}_{4}$ and a pendent vertex, then $\operatorname{diam}(G)=3$ and $\mathrm{pd}_{\text {is }}(G)=4$. If $G$ is $\mathrm{C}_{4}$ with two pendent vertices one each at two vertices of $\mathrm{C}_{4}$ or two or more pendent vertices at a single vertex of $\mathrm{C}_{4}$, then diam $(\mathrm{G})=3$ and $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\mathrm{V}(\mathrm{G})|-2$. Suppose $G$ contains $\mathrm{C}_{3}$. If G $=\mathrm{C}_{3}$, then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=3$, a contradiction. If G is $\mathrm{C}_{3}$ with one or more pendent vertices at a single vertex, then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=3$. If G is $C_{3}$ with a $P_{2}$ attached at a vertex, then $\operatorname{diam}(G)=3$ and $\mathrm{pd}_{\mathrm{i}}$ (G) $\leq 3$, a contradiction. If G is $\mathrm{C}_{3}$ with two pendent vertices
attached one each at two vertices of $\mathrm{C}_{3}$, then $\mathrm{pd}_{\text {is }}(\mathrm{G}) \leq 3$, a contradiction.
The converse is obvious.
Result: $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-1$ if and only if for any partition of $\mathrm{V}(\mathrm{G})$ into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that
$\mathrm{G}=<\mathrm{V}_{1}>+<\mathrm{V}_{2}>$, if $<\mathrm{V}_{\mathrm{i}}>$ is connected, $\mathrm{i} \in\{1,2\}$ then diam ( $\left\langle\mathrm{V}_{\mathrm{i}}\right\rangle$ ) $\geq 3$ or if $\left\langle\mathrm{V}_{\mathrm{i}}\right\rangle$ is disconnected, then there exist an edge in $\left\langle\mathrm{V}_{\mathrm{i}}\right\rangle$ or $\left\langle\mathrm{V}_{\mathrm{i}}\right\rangle$ is connected and contains a $\mathrm{K}_{3}$ with a pendent vertex as an induced subgraph.
For, Let us consider the following graph G.


Let $\Pi=\left\{\left\{\mathrm{u}_{1}, \mathrm{u}_{4}\right\},\left\{\mathrm{u}_{2}\right\},\left\{\mathrm{u}_{3}\right\},\left\{\mathrm{u}_{5}\right\},\left\{\mathrm{u}_{6}\right\},\left\{\mathrm{u}_{7}\right\}\right\}$.Then $\mathrm{c}_{\Pi}\left(\mathrm{u}_{1}\right)=$ $(0,1,2,1,1,1) ; \mathrm{c}_{\Pi}\left(\mathrm{u}_{4}\right)=(0,1,1,1,1,1) . \Pi$ is an isolate resolving partition of G . Therefore, $p d_{i s}(\mathrm{G}) \leq \mathrm{n}-1$.
Theorem: Let G be a connected graph. Then $p d_{i s}(\mathrm{G})=\mathrm{n}-1$ if and only if either for any three vertices $u_{1}, u_{2}, u_{3}$ such that < $\left\{u_{1}, u_{2}, u_{3}\right\}>$ is disconnected, $d\left(u_{1}, v\right)=d\left(u_{2}, v\right)$ for any $v \in V(G), v \notin\left\{u_{1}, u_{2}, u_{3}\right\}$ or $d\left(u_{2}, v\right)=d\left(u_{3}, v\right)$ for every $v \in V$ $(G), v \notin\left\{u_{1}, u_{2}, u_{3}\right\}$ or $d\left(u_{1}, v\right)=d\left(u_{3}, v\right)$ for every $v \in V(G)$, $\mathrm{v} \notin\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}$ or for any four vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}$ such that $u_{1}$ and $u_{2}$ are not adjacent, $u_{3}$ and $u_{4}$ are not adjacent and $\mathrm{d}\left(\mathrm{u}_{1}, \mathrm{v}\right)=\mathrm{d}\left(\mathrm{u}_{2}, \mathrm{v}\right)$ for every $\mathrm{v} \in V(\mathrm{G}), \mathrm{v} \neq \mathrm{u}_{1}, \mathrm{u}_{2}$ and $\mathrm{d}\left(\mathrm{u}_{3}, \mathrm{v}\right)=$ $d\left(u_{4}, v\right)$ for every $v \in V(G), v \neq u_{3}, u_{4}$ and $G$ is such that for any partition of $V(G)$ into subsets $V_{1}$ and $V_{2}$, either $\left.G \neq<V_{1}\right\rangle$ $+\left\langle V_{2}\right\rangle$ or if $G=\left\langle V_{1}\right\rangle+\left\langle V_{2}\right\rangle$, then if $\left\langle V_{i}\right\rangle, i=1$ or 2 is connected, then its diameter greater than or equal to 3 or if $\left.<\mathrm{V}_{\mathrm{i}}\right\rangle$ is disconnected, then there exist an edge in $\left.<\mathrm{V}_{\mathrm{i}}\right\rangle$.

Proof: If G satisfies the conditions in the theorem, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \neq \mathrm{n}$ and $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})>\mathrm{n}-2$. Therefore
$\mathrm{pd}_{\text {is }}(\mathrm{G})=\mathrm{n}-1$. If $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$, then the conditions of the theorem are obviously satisfied.

## Paths and Cycles

Theorem: $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$.
Proof: Let $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=2$. Let $=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$ be an isolate vertex resolving partition of $V(G)$. Suppose $|V(G)| \geq 3$. Let $V_{1}=\left\{u_{1}\right.$, $\left.\mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}}\right\}$ and $\mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{r}}\right\}$. Since is $\Pi$ an isolate vertex resolving partition, $\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{V}_{2}\right)$ is different for every i and $d\left(V_{1}, u_{j}\right)$ is different for every $j$. since $|V(G)| \geq 3$, at least one of $\mathrm{V}_{1}, \mathrm{~V}_{2}$ has at least two elements. Let $\left|\mathrm{V}_{1}\right| \geq 2$. Then there exist a vertex $u \in V_{1}$ such that $d\left(u, V_{2}\right) \geq 2$. Let $d\left(u, V_{2}\right)=r$ $\geq 2$. Let $\mathrm{u}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{r}-1}, \mathrm{v}_{\mathrm{j}}$ be the shortest path from u to $\mathrm{V}_{2}$. Then $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{r}-1} \in \mathrm{~V}_{1} . \mathrm{d}\left(\mathrm{v}_{\mathrm{j}}, \mathrm{V}_{1}\right)=1$. Let x be an isolate of $\mathrm{V}_{1}$. Then $\mathrm{d}\left(\mathrm{x}, \mathrm{V}_{2}\right)=1$.That is there exist $\mathrm{y} \in \mathrm{V}_{2}$ such that $\mathrm{d}(\mathrm{x}$, y) $=1$. Clearly, $\mathrm{x} \notin\left\{\mathrm{u}_{1}, \mathrm{w}_{1}, \mathrm{w}_{2}, . ., \mathrm{w}_{\mathrm{r}-1}\right\}$.Therefore, $\mathrm{d}\left(\mathrm{v}_{\mathrm{j}}, \mathrm{V}_{1}\right)=$ $d\left(y, V_{1}\right)=1$. If $v_{j} \neq y$, then $v_{j}$ and $y$ are not resolved. If $v_{j}=$ $y$,then $x$ and $w_{r-1}$ are not resolved, a contradiction. Therefore $|\mathrm{V}(\mathrm{G})| \leq 2$. Clearly, $|\mathrm{V}(\mathrm{G})|=2$. That is $\mathrm{G}=\mathrm{P}_{2}$. The converse is obvious.
Theorem 3.2. $\operatorname{pd}_{\text {is }}\left(P_{n}\right)=\left\{\begin{array}{c}2 \text { if } n=2 \\ 3 \text { if } n \geq 3\end{array}\right.$
Proof: Obviously $\mathrm{pd}_{\text {is }}\left(\mathrm{P}_{2}\right)=2, \mathrm{pd}_{\mathrm{is}}\left(\mathrm{P}_{3}\right)=3=\mathrm{pd}_{\text {is }}\left(\mathrm{P}_{4}\right)$.
Let $\mathrm{n} \geq 5$. Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$.

Let $\Pi=\left\{\left\{\mathrm{u}_{1}, \mathrm{u}_{4}, \mathrm{u}_{6}, \mathrm{u}_{8}, \ldots\right\},\left\{\mathrm{u}_{2}, \mathrm{u}_{5}, \mathrm{u}_{7} \ldots\right\},\left\{\mathrm{u}_{3}\right\}\right\}$. Clearly, $\Pi$ is an isolate vertex resolving partition of $\mathrm{P}_{\mathrm{n}}$. Therefore $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{P}_{\mathrm{n}}\right) \leq$ 3. If $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{P}_{\mathrm{n}}\right)=2$, then $\mathrm{n}=2$, a contradiction by previous theorem. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{P}_{3}\right)=3$.

Theorem: Let $\mathrm{n} \geq 3$. Then $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\begin{array}{l}3 \text { if } \mathrm{n} \neq 4 \\ 4 \text { if } \mathrm{n}=4\end{array}\right.$
Proof. It can be seen that, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{3}\right)=3, \mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{4}\right)=4$.
When $\mathrm{n}=5, \Pi=\{\{1,3,4\},\{2\},\{5\}\}$ is an isolate vertex resolving partition of G. Therefore,
$\mathrm{pd}_{\text {is }}\left(\mathrm{C}_{5}\right) \leq 3$. But $\mathrm{pd}_{\text {is }}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\operatorname{pd}_{\text {is }}\left(\mathrm{C}_{5}\right)=3$.
Let $\mathrm{n} \geq 6$.
Case (i): When $\mathrm{n}=6 \mathrm{k}, \mathrm{k} \geq 1$.
Subcase( i ): k is even
Let $\Pi=\{\{1,4,6,8, \ldots, 3 \mathrm{k}, 3 \mathrm{k}+2,3 \mathrm{k}+3, \ldots, 6 \mathrm{k}-1\},\{2,5,7$, $9, \ldots, 3 \mathrm{k}+1,3 \mathrm{k}+4,3 \mathrm{k}+6, \ldots . .6 \mathrm{k}\},\{3\}\}$. Then $\Pi$ is an isolate vertex resolving partition of $G$. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}}\right) \leq 3$. But $\operatorname{pd}_{\text {is }}(G)=2$ if and only if $G=P_{2}$. Therefore, $\mathrm{pd}_{\text {is }}\left(\mathrm{C}_{6 \mathrm{k}}\right)=3$.
Subcase(ii): k is odd.
Let $\Pi=\{\{1,4,6,8, \ldots, 3 \mathrm{k}+1,3 \mathrm{k}+3,3 \mathrm{k}+4,3 \mathrm{k}+6, \ldots, 6 \mathrm{k}-1\},\{2$, $5,7,9, \ldots, 3 \mathrm{k}, 3 \mathrm{k}+2,3 \mathrm{k}+5, \ldots, 6 \mathrm{k}\},\{3\}\}$. Then $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}}\right) \leq 3$. But $\operatorname{pd}_{\text {is }}(\mathrm{G})=2$ if and only if $G=P_{2}$. Therefore, $\mathrm{pd}_{\text {is }}\left(\mathrm{C}_{6 \mathrm{k}}\right)=3$.
Case (ii): When $\mathrm{n}=6 \mathrm{k}+1, \mathrm{k} \geq 1$.
Subcase(i): $k$ is even.
Let $\Pi=\{\{1,2,5,7, \ldots, 3 \mathrm{k}+3,3 \mathrm{k}+5, \ldots, 6 \mathrm{k}+1\},\{3,6,8,10, \ldots$ $, 3 \mathrm{k}+4,3 \mathrm{k}+6, \ldots, 6 \mathrm{k}\},\{4\}\}$. Then $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+1}\right) \leq 3$. But $\mathrm{pd}_{\mathrm{is}}$ $(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+1}\right)=3$.
Subcase(ii): k is odd.
Let $\Pi=\{\{1,2,5,7, \ldots, 3 \mathrm{k}+4,3 \mathrm{k}+6, \ldots, 6 \mathrm{k}+1\},\{3,6,8,10, \ldots$, $3 \mathrm{k}+3,3 \mathrm{k}+5, \ldots, 6 \mathrm{k}\},\{4\}\}$. Then $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\operatorname{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+1}\right)=3$. But $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})$ $=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+1}\right)=3$.
Case (iii): When $\mathrm{n}=6 \mathrm{k}+2, \mathrm{k} \geq 1$.
Subcase(i): $k$ is even.
Let $=\{\{1,4,6,8, \ldots, 3 \mathrm{k}+4,3 \mathrm{k}+5,3 \mathrm{k}+7, \ldots, 6 \mathrm{k}+1\},\{2,5$, $7,9, \ldots, 3 \mathrm{k}+3,3 \mathrm{k}+6, \ldots, 6 \mathrm{k}+2\},\{3\}\}$. Then $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+2}\right) \leq 3$. But $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+2}\right)=3$. Subcase(ii): $k$ is odd.

Let $\Pi=\{\{1,4,6,8, \ldots, 3 \mathrm{k}+3,3 \mathrm{k}+4,3 \mathrm{k}+6, \ldots, 6 \mathrm{k}+1\},\{2,5$, $7,9, \ldots, 3 \mathrm{k}+2,3 \mathrm{k}+5, \ldots, 6 \mathrm{k}+2\},\{3\}\}$. Then $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+2}\right) \leq 3$. But $\mathrm{pd}_{\text {is }}(\mathrm{G})=2$ if and only if $G=P_{2}$. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+2}\right)=3$.
Case (iv): When $n=6 k+3, k \geq 1$.
Subcase(i): $k$ is even.
Let $\Pi=\{\{1,4,6,8, \ldots, 3 \mathrm{k}+4,3 \mathrm{k}+6, \ldots, 6 \mathrm{k}+2\},\{2,5,7,9, \ldots$ $, 3 \mathrm{k}+3,3 \mathrm{k}+5, \ldots 6 \mathrm{k}+3\},\{3\}\}$.Then $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+3}\right) \leq 3$.
But $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+3}\right)=3$. Subcase(ii): k is odd.

Let $\Pi=\{\{1,4,6,8, \ldots, 3 \mathrm{k}+3,3 \mathrm{k}+5, \ldots, 6 \mathrm{k}+2\},\{2,5,7,9, \ldots$ $, 3 \mathrm{k}+4,3 \mathrm{k}+6, \ldots, 6 \mathrm{k}+3\},\{3\}\}$. Then $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+3}\right) \leq 3$. But $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})$ $=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+3}\right)=3$.

Case (v): When $n=6 k+4, k \geq 1$.
Subcase(i): $k$ is even.
Let $\Pi=\{1,4,6,8, \ldots, \quad 3 \mathrm{k}+2,3 \mathrm{k}+4,3 \mathrm{k}+5,3 \mathrm{k}+7, \ldots .6 \mathrm{k}+$ $3\},\{2,5,7,9, \ldots, 3 \mathrm{k}+3,3 \mathrm{k}+6,3 \mathrm{k}+8, \ldots, 6 \mathrm{k}+4\},\{3\}\}$. Then $\Pi$ is an isolate vertex resolving partition of G.Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+4}\right)$ $\leq 3$. But $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\mathrm{pd}_{\text {is }}\left(\mathrm{C}_{6 \mathrm{k}+4}\right)=3$.
Subcase(ii): k is odd.
Let $\quad \Pi=\{\{1,4,6,8, \ldots \quad, 3 \mathrm{k}+3,3 \mathrm{k}+5,3 \mathrm{k}+6,3 \mathrm{k}+8, \ldots . .6 \mathrm{k}+$ $3\},\{2,5,7,9, \ldots, 3 \mathrm{k}+2,3 \mathrm{k}+4,3 \mathrm{k}+7, \ldots, 6 \mathrm{k}+4\},\{3\}\}$. Then $\Pi$ is an isolate vertex resolving partition of G.Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+4}\right)$ $\leq 3$. But $\operatorname{pd}_{\mathrm{is}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\mathrm{pd}_{\mathrm{is}}$ $\left(\mathrm{C}_{6 \mathrm{k}+4}\right)=3$.
Case (vi): When $\mathrm{n}=6 \mathrm{k}+5, \mathrm{k} \geq 1$.
Subcase(i): $k$ is even.
Let $\Pi=\{\{1,4,6,8, \ldots, 3 \mathrm{k}+4,3 \mathrm{k}+6, \ldots, 6 \mathrm{k}+4\},\{2,5,7$, $9, \ldots, 3 \mathrm{k}+5,3 \mathrm{k}+7, \ldots, 6 \mathrm{k}+5\},\{3\}\}$.Then $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+5}\right) \leq 3$. But $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+5}\right)=3$.
Subcase (ii): k is odd.
Let $\Pi=\{\{1,4,6,8, \ldots, 3 \mathrm{k}+3,3 \mathrm{k}+5,3 \mathrm{k}+7, \ldots, 6 \mathrm{k}+4\},\{2,5,7$, $9, \ldots, 3 \mathrm{k}+2,3 \mathrm{k}+4,3 \mathrm{k}+6, \ldots, 6 \mathrm{k}+5\},\{3\}\}$. Then $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+5}\right) \leq 3$. But $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=2$ if and only if $\mathrm{G}=\mathrm{P}_{2}$. Therefore, $\mathrm{pd}_{\mathrm{is}}\left(\mathrm{C}_{6 \mathrm{k}+5}\right)=3$.

Let $\mathbf{H}=\{$ Connected graphs $G$ of order $n \geq 3$ such that $H=G-$ $\{\mathrm{v}\}$ is a complete multipartite graph for some vertex v of G$\}$. Let $\mathbf{F}=\{\mathrm{G} \in \mathbf{H}$ satisfying one of the following properties (i) For every integer i , with $1 \leq \mathrm{i} \leq \mathrm{k}, \mathrm{a}_{\mathrm{i}} \in\left\{0, \mathrm{n}_{\mathrm{i}}\right\}$ and there are at least two distinct integers $\mathrm{j}, \mathrm{j}^{\prime}, 1 \leq \mathrm{j}, \mathrm{j}^{\prime} \leq \mathrm{k}$ for which $\mathrm{a}_{\mathrm{j}}=\mathrm{a}_{\mathrm{j}}{ }^{\prime}=0$
(ii) There is exactly one integer j with $1 \leq \mathrm{j} \leq \mathrm{k}$ such that
$0<\mathrm{a}_{\mathrm{j}}<\mathrm{n}_{\mathrm{j}}$ and $\mathrm{a}_{\mathrm{j}}=\mathrm{n}_{\mathrm{j}}-1$, for this integer j . Let $\mathbf{G}=\left\{\mathrm{G}=\mathrm{G}_{\mathrm{n}}+\right.$ $2 k_{2}$ where $G_{n}$ is a complete multipartite graph of order $n-4 \geq$ $1\}$.
In [3], Graphs of order $n$ containing an induced complete multipartite subgraph of order $n-1$ are used to characterize all connected graphs of order $n \geq 4$ with locating chromatic number $\mathrm{n}-1$.

Theorem: $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$ if and only if either $\mathrm{G} \in \mathbf{G}$ or G is obtained from a complete multipartite graph H with k-partite sets $\mathrm{k} \geq 2$ and joining a vertex v to all but one vertex of H and there exist two vertices in the partite set of H which contains the unique vertex non-adjacent with v .

Proof: Suppose $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$. But $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{ipd}(\mathrm{G}) \leq \mathrm{pd}(\mathrm{G})$. Therefore ipd $(G)=n$ or $n-1$. If ipd $(G)=n$, then $G$ is a complete bipartite graph. Then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}$, a contradiction. Therefore, $\operatorname{ipd}(\mathrm{G})=\mathrm{n}-1$. Therefore, $\mathrm{G} \in \mathbf{H} \cup \mathbf{G}$.

Conversely, suppose $G \in \mathbf{H} \cup \mathbf{G}$. If $\mathrm{G} \in \mathbf{G}$, then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-$ 1. Suppose $G \in \mathbf{F}$. If the defining property (i) for graphs in $\mathbf{F}$ is satisfied by $G$, then $\operatorname{pd}_{\mathrm{is}}(\mathrm{G})<\mathrm{n}-1$, a contradiction. Therefore G is a graph in $\mathbf{F}$ for which the condition (ii) is satisfied with the additional constraint that there exist 2 vertices in the partite set of H which contains the unique vertex non-adjacent with v.

## Bounds on Isolate Vertex Resolving Partition

Theorem: Let $G$ be a connected graph of order $n \geq 5$ containing an induced subgraph
$H \in\left\{2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}, \mathrm{P}_{2} \cup \mathrm{P}_{3}, \mathrm{P}_{2} \cup \mathrm{~K}_{3}, \mathrm{P}_{5}, \mathrm{C}_{5}, \mathrm{C}_{5}+\mathrm{e}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}\right\}$ where


Then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-2$.
Proof: Suppose $\mathrm{H}=2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$


Let $\Pi=\{\{1,3\},\{2,4\}, \ldots,\{n\}\}$.Then $c_{\Pi}(1)=\left(0, d_{2}, d_{3}\right.$, $\left.\mathrm{d}_{4}, \ldots, \mathrm{~d}_{\mathrm{n}}\right), \quad \mathrm{c}_{\Pi}(3)=\left(0,1, \mathrm{~d}_{3}^{\prime}, \mathrm{d}_{4}^{\prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}^{\prime}\right) \mathrm{c}_{\Pi}(2) \quad=$ $\left(d_{1}^{\prime \prime}, 0, d_{3}^{\prime \prime}, d_{4}^{\prime \prime}, \ldots \ldots, d_{n}^{\prime \prime}\right), \quad c_{\Pi}(4)=\left(1,0, d_{3}^{\prime "}, d_{4}^{\prime " \prime}, \ldots \ldots, d_{n}^{\prime " \prime}\right)$.
Therefore, $\Pi$ is an isolate vertex resolving partition. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2$.
Let $\mathrm{H}=\mathrm{P}_{2} \cup \mathrm{P}_{3}$.


Let $\Pi=\{\{1,3\},\{2,5\},\{4\}, \ldots,\{n\}\}$.Then $\mathrm{c}_{\Pi}(1)=\left(0,1, \mathrm{~d}_{3}\right.$, $\left.\mathrm{d}_{4}, \mathrm{~d}_{5}, \ldots, \mathrm{~d}_{\mathrm{n}}\right), \mathrm{c}_{\Pi}(3)=\left(0,2, \mathrm{~d}_{3}^{\prime}, \mathrm{d}_{4}^{\prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}^{\prime}\right), \mathrm{c}_{\Pi}(2)=$ $\left(1,0, \mathrm{~d}_{3}^{\prime \prime}, \mathrm{d}_{4}^{\prime \prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}\right), \mathrm{c}_{\Pi}(5)=\left(2,1,0, \mathrm{~d}_{4}^{\prime "}, \mathrm{~d}_{5}^{\prime \prime \prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}{ }^{\prime \prime}\right)$. Therefore, $\Pi$ is an isolate vertex resolving partition. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2$.
Let $\mathrm{H}=\mathrm{P}_{2} \cup \mathrm{~K}_{3}$.


Let $\Pi=\{\{1,3,5\},\{2\},\{4\}, \ldots,\{n\}\}$.Then $\mathrm{c}_{\Pi}(1)=\left(0,1, \mathrm{~d}_{3}\right.$, $\left.d_{4}, \quad d_{5}, \quad \ldots d_{n}\right), \quad c_{\Pi}(3)=\left(0, d_{2}^{\prime}, 1, \ldots \ldots, d_{n}^{\prime}\right), \quad c_{\Pi}(5)=$ $\left(0, \mathrm{~d}_{2}^{\prime \prime}, 1, \ldots \ldots, \mathrm{~d}_{\mathrm{n}}\right)$. Therefore $\Pi$ is an isolate vertex resolving partition. Therefore $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2$.


Let $\Pi=\{\{1,3\},\{2,5\},\{4\}, \ldots,\{n\}\}$. Then $\mathrm{c}_{\Pi}(1)=(0,1,3$, $\left.\mathrm{d}_{4}, \ldots, \mathrm{~d}_{\mathrm{n}}\right), \mathrm{c}_{\Pi}(3)=\left(0,1,1, \mathrm{~d}_{4}^{\prime \prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}^{\prime \prime}\right), \mathrm{c}_{\Pi}(2)=$ $\left(1,0,2, \mathrm{~d}_{4}^{\prime \prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}\right) \mathrm{c}_{\Pi}(5)=\left(2,0,1, \mathrm{~d}_{4}^{\prime \prime \prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}{ }^{\prime \prime}\right)$.
Therefore, $\Pi$ is an isolate vertex resolving partition. Therefore, $\operatorname{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2$.
Let $\mathrm{H}=\mathrm{C}_{5}$.


Let $\Pi=\{\{1,3,4\},\{2\},\{5\}, \ldots .,\{n\}\}$.Then $\mathrm{c}_{\Pi}(1)=(0,1,1$, $\left.\mathrm{d}_{4}, \ldots, \quad \mathrm{~d}_{\mathrm{n}}\right), \quad \mathrm{c}_{\Pi}(3)=\left(0,1,2, \mathrm{~d}_{4}^{\prime}, \ldots . ., \mathrm{d}_{\mathrm{n}}^{\prime}\right), \quad \mathrm{c}_{\Pi}(4)=$ $\left(0,2,1, d_{4}^{\prime}, \ldots \ldots, d_{n}^{\prime \prime}\right)$. Therefore, $\Pi$ is an isolate vertex resolving partition. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2$.
Let $\mathrm{H}=\mathrm{C}_{5}+\mathrm{e}$


Let $H=C_{5}+$ e. Let $\Pi=\{\{1,3,4\},\{2\},\{5\}, \ldots,\{n\}\}$.Then, $\mathrm{c}_{\Pi}(1)=\left(0,1,1, d_{4}, \ldots, \mathrm{~d}_{\mathrm{n}}\right), \mathrm{c}_{\Pi}(3)=\left(0,1,2, \mathrm{~d}_{4}^{\prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}^{\prime}\right)$, $\mathrm{c}_{\Pi}(4)=\left(0,2,1, \mathrm{~d}_{4}^{\prime \prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}^{\prime \prime}\right)$.Therefore, $\Pi$ is an isolate vertex resolving partition. Therefore, $\operatorname{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2$.
Let $\mathrm{H}=\mathrm{H}_{1}$.


Let $\Pi=\{\{1,2,5\},\{3\},\{4\}, \ldots,\{n\}\}$. Then $\mathrm{c}_{\Pi}(1)=(0,1,1$, $\left.\mathrm{d}_{4}, \ldots, \mathrm{~d}_{\mathrm{n}}\right), \quad \mathrm{c}_{\Pi}(2)=\left(0,1,2, \mathrm{~d}_{4}^{\prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}^{\prime}\right) \mathrm{c}_{\Pi}(5)=$ $\left(0,3,1, \mathrm{~d}_{4}^{\prime \prime}, \ldots . ., \mathrm{d}_{\mathrm{n}}^{\prime \prime}\right)$.Therefore, $\Pi$ is an isolate vertex resolving partition. Therefore, $\operatorname{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2$.
Let $\mathrm{H}=\mathrm{H}_{2}$.


Let $\Pi=\{\{1,2,5\},\{3\},\{4\}, \ldots . .,\{n\}\}$. Then $\mathrm{c}_{\Pi}(1)=(0,1,1$, $\left.\mathrm{d}_{4}, \ldots, \mathrm{~d}_{\mathrm{n}}\right), \mathrm{c}_{\Pi}(2)=\left(0,1,2, \mathrm{~d}_{4}^{\prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}^{\prime}\right), \mathrm{c}_{\Pi}(5)=\left(0,3,1, \mathrm{~d}_{4}\right.$, $\ldots, \mathrm{d}_{\mathrm{n}}$ ). Therefore, $\Pi$ is an isolate vertex resolving partition. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2$.
Let $\mathrm{H}=\mathrm{H}_{3}$.


Let $\Pi=\{\{1,3,5\},\{2\},\{4\}, \ldots,\{n\}\}$.Then $\mathrm{c}_{\Pi}(1)=\left(0,2,2, \mathrm{~d}_{4}\right.$, $\left.\ldots, \mathrm{d}_{\mathrm{n}}\right), \quad \mathrm{c}_{\Pi}(2) \quad=\left(0,1,1, \mathrm{~d}_{4}^{\prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}^{\prime}\right), \quad \mathrm{c}_{\Pi}(5) \quad=$ $\left(0,3,1, \mathrm{~d}_{4}^{\prime \prime}, \ldots \ldots, \mathrm{d}_{\mathrm{n}}^{\prime \prime}\right)$. Therefore, $\Pi$ is an isolate vertex resolving partition. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2$.
Definition: [3] Let G be a connected graph of order atleast three such that $\mathrm{H}=\mathrm{G}-\mathrm{v}$ is a complete multipartite graph for
some vertex v of G . Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}, \mathrm{k} \geq 2$ denote the partite sets of $H$. Let $\left|V_{i}\right|=n_{i}, 1 \leq i \leq k$ and let $a_{i},(1 \leq i \leq k)$ denote the number of vertices in $V_{i}$ which are adjacent in $G$ with $v$. Define $\sigma(\mathrm{G})$ by $\sigma(\mathrm{G})=\sum_{\mathrm{i}=1}^{\mathrm{k}} \max \left\{\mathrm{a}_{\mathrm{i}}, \mathrm{n}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}}\right\}$.

Result: There are graphs with $\mathrm{G}-\mathrm{v}$ a complete multipartite graph for some $\mathrm{v} \in \mathrm{V}(\mathrm{G})$ such that $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\sigma(\mathrm{G})+1$. Let H be a complete multipartite graph with partite sets $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}$ and $\left|V_{i}\right|=n_{i} \geq 1$. Let $n_{i} \geq 2$ for atleast one $i, 1 \leq i \leq k$. Add a new vertex v to H and make v adjacent with exactly one vertex of each $\mathrm{V}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{k}$. Let G be the resulting graph. Let $\mathrm{V}_{1}, \mathrm{~V}_{2}$, $\ldots, \mathrm{V}_{\mathrm{t}}$ have cardinality 1 and the remaining partite sets have cardinality atleast $2 . \sigma(G)=1+1+1+\ldots \ldots+1(\mathrm{t}-$ times $)+$ $\sum_{\mathrm{i}=\mathrm{t}+1}^{\mathrm{k}} \mathrm{n}_{\mathrm{i}}-1=\mathrm{t}+\mathrm{n}_{\mathrm{t}+1}+\ldots .+\mathrm{n}_{\mathrm{k}}-(\mathrm{k}-\mathrm{t})=\mathrm{n}-1-\mathrm{k}+\mathrm{t}$. Let $\Pi$ $\left.=\left\{u_{t+1}, \ldots, u_{k}, v\right\},\{x\}\right\}$ where $x$ runs over $V(G)-\left\{u_{i+1}, \ldots\right.$, $\left.u_{k}, v\right\}$. Clearly, $\Pi$ is a minimum isolate vertex resolving partition of G. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-(\mathrm{k}-\mathrm{t}+1)+1=\mathrm{n}-\mathrm{k}+$ $\mathrm{t}=\sigma(\mathrm{G})+1$.
Lemma: Let $G$ be a connected graph such that $G-v$ is a complete multipartite graph for some vertex $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. Then $\operatorname{pd}_{\mathrm{is}}(\mathrm{G}) \leq \sigma(\mathrm{G})+1$.

Proof: It has been proved in [3] that $\operatorname{ipd}(\mathrm{G}) \leq \sigma(\mathrm{G})+1$. But $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{ipd}(\mathrm{G})$.
Therefore $\operatorname{pd}_{i s}(\mathrm{G}) \leq \sigma(\mathrm{G})+1$.
Lemma: Given a positive integer k , there exist a graph G such that $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\sigma(\mathrm{G})-\mathrm{k}$.

Proof: Let H be a complete multipartite graph with partite sets $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}+2},\left|\mathrm{~V}_{\mathrm{i}}\right| \geq 2$ for all i. Add a vertex v to H and make it adjacent with exactly one vertex of H .
Let $\left|\mathrm{V}_{\mathrm{i}}\right|=\mathrm{n}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{k}+2) . \sigma(\mathrm{G})=\mathrm{n}-2$. Let $\Pi=\left\{\left\{\mathrm{v}, \mathrm{u}_{11}, \mathrm{u}_{21}\right.\right.$, $\left.\ldots, \mathrm{u}_{\mathrm{k}+2,1}\right\}$, singletons $\}$. Therefore, $\Pi=\mathrm{n}-(\mathrm{k}+2+1)+1=$ $\mathrm{n}-\mathrm{k}-2$.

Suppose, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-\mathrm{k}-3$. Suppose $\Pi^{\prime}$ is a $\mathrm{pd}_{\mathrm{is}}$ partition of $G$ such that one of the sets in the partition is $\{v\}$. Then there exist one set of the partition containing two elements (namely the adjacent vertex of $v$ and the non-adjacent vertex of $v$ in the set if exist). Therefore, $\Pi^{\prime}=1+1+\mathrm{n}-3=\mathrm{n}-1$. Therefore n $-1 \leq n-k-3 . \mathrm{k} \leq-2$, a contradiction.
Suppose, one of the sets say $S$, of $\Pi^{\prime}$ contains $v$ as well as other elements from $H$. Then $S$ cannot contain the unique adjacent vertex of v in H . It can contain exactly one nonadjacent vertex from each of the partite sets. Therefore, $|\mathrm{S}| \leq 1$ $+\mathrm{k}+2=\mathrm{k}+3$. Further the remaining sets of $\Pi^{\prime}$ must be singletons. Therefore, $\left|\Pi^{\prime}\right| \geq 1+\mathrm{n}-(\mathrm{k}+3)=\mathrm{n}-\mathrm{k}-2$. But $\left|\Pi^{\prime}\right| \leq \mathrm{n}-\mathrm{k}-3$. Therefore, $\mathrm{n}-\mathrm{k}-2 \leq\left|\Pi^{\prime}\right| \leq \mathrm{n}-\mathrm{k}-3$, a contradiction. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \geq \mathrm{n}-\mathrm{k}-2$. Therefore, $\operatorname{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-\mathrm{k}-2=\sigma-\mathrm{k}$.

Illustration: Let G be obtained from $\mathrm{K}_{2,3}$ by adding a new vertex and joining it to a vertex of degree 2 in $\mathrm{K}_{2,3}$.


Let $\Pi=\left\{\left\{\mathrm{v}, \mathrm{u}_{1}, \mathrm{u}_{4}\right\},\left\{\mathrm{u}_{2}\right\},\left\{\mathrm{u}_{3}\right\},\left\{\mathrm{u}_{5}\right\}\right\}$. $\Pi$ is an isolate resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}} \leq 4$. Suppose $\mathrm{pd}_{\mathrm{is}}=3$.

Let $\Pi^{\prime}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right\}$ be a $\mathrm{pd}_{\text {is }}-$ partition of G . Let $\mathrm{v} \in \mathrm{V}_{1}$ (say). $\mathrm{V}_{1}$ can contain at most two elements one from the partite sets of $\mathrm{K}_{2,3}$. The remaining elements which are atleast 3 in number must be accommodated in $\mathrm{V}_{2}$ and $\mathrm{V}_{3}$. Therefore, either $V_{2}$ or $V_{3}$ contains atleast two elements from $K_{2,3}$. Suppose $V_{2}$ contains atleast two elements from $\mathrm{K}_{2,3}$. If $\left|\mathrm{V}_{2}\right|=3$, then $\mathrm{V}_{2}=$ $\left\{u_{3}, u_{4}, u_{5}\right\}$. Then $u_{4}$ and $u_{5}$ cannot be resolved by $V_{1}$ and $V_{3}$. Therefore $\left|V_{2}\right|=2$. Since elements of $V_{2}$ are resolved by $V_{1}$ or $V_{3}, V_{2}$ can contain only $u_{3}$ and $u_{4}$. If $V_{3}$ contains two elements then it should be $u_{1}$ and $u_{2}$, since $V_{3}$ has an isolate. But $u_{1}$ and $\mathrm{u}_{2}$ cannot be resolved by any element. Therefore, $\mathrm{V}_{3}$ contains one element. In this case, $\mathrm{V}_{1}$ contains three elements. But $\mathrm{V}_{1}$ can contain only $v, u_{1}, u_{4}$ a contradiction. (since $u_{4} \in V_{2}$ ). Therefore, $\operatorname{pd}_{\mathrm{is}}(\mathrm{G}) \neq 3 . \mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \neq 1$, $2\left(\right.$ since $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=1$ if and only if $\mathrm{G}=\mathrm{K}_{1}, \mathrm{pd}_{\mathrm{is}}(\mathrm{G})=2$ if and only if $\left.\mathrm{G}=\mathrm{K}_{2}\right)$. Therefore, $\operatorname{pd}_{\mathrm{is}}(\mathrm{G})=4 . \sigma(\mathrm{G})=4$. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\sigma(\mathrm{G})=4$.
Illustration: Let us consider the following graph G .


Now $\sigma(\mathrm{G})=3+1+2+6$. There are two isolate vertex resolving partition of $G$ namely
$\Pi_{1}=\left\{\left\{\mathrm{v}, \mathrm{u}_{5}, \mathrm{u}_{8}\right\},\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{u}_{2}\right\},\left\{\mathrm{u}_{3}\right\},\left\{\mathrm{u}_{4}\right\},\left\{\mathrm{u}_{6}\right\},\left\{\mathrm{u}_{7}\right\}\right\}$ and $\Pi_{2}=$ $\left\{\{\mathrm{v}\},\left\{\mathrm{u}_{4}, \mathrm{u}_{5}\right\},\left\{\mathrm{u}_{7}, \mathrm{u}_{8}\right\},\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{u}_{2}\right\},\left\{\mathrm{u}_{3}\right\},\left\{\mathrm{u}_{6}\right\}\right\}$. Therefore $\left|\Pi_{1}\right|=$ $\left|\Pi_{2}\right|=7$. It can easily verified that $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=7$. That is $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\sigma(\mathrm{G})+1$.

Illustration: Let H be a complete multipartite graph. Add a vertex v to H and join v to every vertex of H . Let G be the resulting graph. The graph G is a complete multipartite graph and therefore $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=|\mathrm{V}(\mathrm{G})|$ and $\sigma(\mathrm{G})=|\mathrm{V}(\mathrm{H})|$. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\sigma(\mathrm{G})+1$.

Theorem: Let H be a complete multipartite graph with k partite sets, $\mathrm{k} \geq 2$. Join a vertex v to H and join v to all but one vertex of H . There exist atleast two vertices in the partite set which contains a non-adjacent vertex of $v$. Then $\operatorname{pd}_{i s}(G)=n-$ 1.

Proof: Let $\Pi=\left\{\left\{\mathrm{v}, \mathrm{u}_{11}\right\}\right.$, singletons $\}$, where $\mathrm{u}_{11}$ is the unique vertex not adjacent with v . $|\Pi|=\mathrm{n}-1$. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-$ 1. In any isolate vertex resolving partition of $G$, the set containing v , cannot contain two more elements. Also any set in the partition other than the set containing v cannot contain two elements if the set containing v contains two elements. Therefore, there exist exactly one set in the partition containing two elements. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$.
Theorem. Let $G$ be a graph obtained from a complete multipartite graph H by adding a vertex (say) v. Let $\mathrm{V}_{1}$, $\mathrm{V}_{2}, \ldots \ldots ., \mathrm{V}_{\mathrm{k}}$ be the partitite set of H with $\left|\mathrm{V}_{\mathrm{i}}\right|=\mathrm{n}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{k})$. Let $v$ be joined with $a_{i}$, vertices of $V_{i}(1 \leq i \leq k)$. Let $a_{i}=0$ for atleast two partite sets $a_{i}=n_{i}$, for the remaining partite sets. When $a_{i}=0$, then the partite set contains atleast two elements. Then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})<\mathrm{n}-1$.
Proof: Let Without loss of generality $a_{1}=a_{2}=\ldots \ldots . a_{t}=0, t \geq$ 2 and $\mathrm{a}_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}}, \mathrm{t}+1 \leq \mathrm{i} \leq \mathrm{k}$.

Then $\Pi=\left\{\left\{\mathrm{v}, \mathrm{u}_{11}, \mathrm{u}_{21}\right\}\right.$, singletons $\}$ is an isolate vertex resolving partition of $G$, where $u_{11} \in V_{1}$ and $u_{21} \in V_{2}$. Therefore, $\operatorname{pd}_{\mathrm{is}}(\mathrm{G}) \leq|\Pi|=\mathrm{n}-2<\mathrm{n}-1$.

Lemma 4.11. Let $G$ be a connected graph of the form $H+2$ $K_{2}$, where $H$ is a complete multipartite graph of order $n-4 \geq$ 1. Then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$.

Proof: Let $\mathrm{V}\left(2 \mathrm{~K}_{2}\right)=\left\{\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}\right\}$, where $\mathrm{u}_{1}$ and $\mathrm{u}_{2}$ are adjacent and $u_{3}$ and $u_{4}$ are adjacent. Let $\Pi=\left\{\left\{u_{1}, u_{3}\right\}\right.$, singletons $\}$. Clearly, $\Pi$ is an isolate vertex resolving partition of G. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-1$. Suppose, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-2$. Then there exist a $\mathrm{pd}_{\text {is }}$ partition $\Pi_{1}=\left\{\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}\right\}, \mathrm{k} \leq \mathrm{n}-2$. Any $\mathrm{V}_{\mathrm{i}}$ cannot contain two vertices of H . Therefore, vertices of $H$ must appear as singletons. Suppose $V_{1}$ contains $u_{1}, u_{3}, u_{4}$. Since $V_{1}$ has an isolate, $V_{1}$ cannot contain any vertex of $H$. Therefore $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}$. But $\mathrm{c}_{\Pi 1}\left(\mathrm{u}_{3}\right)=\mathrm{c}_{\Pi 1}\left(\mathrm{u}_{4}\right)$, a contradiction. Therefore, either $V_{1}$ contains $u_{1}$ and $u_{3}$ or $u_{1}$ and $u_{4}$ or $u_{2}$ and $u_{3}$ or $u_{2}$ and $u_{4}$. Therefore, $\left|V_{1}\right|=2$. Suppose $V_{1}=$ $\left\{u_{1}, u_{3}\right\}$ and $V_{2}=\left\{u_{2}, u_{4}\right\}$. Therefore, $c_{\Pi 1}\left(u_{1}\right)=c_{\Pi 1}\left(u_{3}\right)$, $a$ contradiction. Therefore, only one of $\mathrm{V}_{1}, \mathrm{~V}_{2}$ is a doubleton. Therefore, $\left|\Pi_{1}\right|=\mathrm{n}-1$, a contradiction. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}$ -1 .

Lemma: Suppose $\mathrm{G}=\left\langle\mathrm{V}_{1}\right\rangle+\left\langle\mathrm{V}_{2}\right\rangle$. If $\left.<\mathrm{V}_{1}\right\rangle$ and $\left.<\mathrm{V}_{2}\right\rangle$ are connected and diameter of either one or both of $\left\langle\mathrm{V}_{1}\right\rangle$ and $<$ $\mathrm{V}_{2}>$ is 3 , then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$ if and only if any $\mathrm{P}_{4}$ in $\left.<\mathrm{V}_{2}\right\rangle$ does not contain a pendent vertex attached with an internal vertex of $\mathrm{P}_{4}$ and $\left\langle\mathrm{V}_{2}\right\rangle$ does not contain an induced subgraph $H$ which is obtained from a complete graph $\mathrm{H}_{1}$ by attaching two pendent vertices one at each two vertices of $\mathrm{H}_{1}$ and removing one or more edges at a vertex other than the vertices at which a pendent is attached, leaving at least one edge.

Proof: Suppose $\mathrm{G}=\left\langle\mathrm{V}_{1}\right\rangle+\left\langle\mathrm{V}_{2}\right\rangle$. Let $\left\langle\mathrm{V}_{1}\right\rangle$ and $\left\langle\mathrm{V}_{2}\right\rangle$ be connected and let diameter of either one or both of $\left\langle\mathrm{V}_{1}\right\rangle$ and $<\mathrm{V}_{2}>$ be 3 . Let $\operatorname{diam}\left(<\mathrm{V}_{2}\right)>=3$. Clearly, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-1$.
Suppose, $\mathrm{P}_{4}$ in $\left\langle\mathrm{V}_{2}\right\rangle$ contains a pendent vertex attached with an internal vertex of $P_{4}$. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be the vertices of $P_{4}$ and y be a pendent attached with $\mathrm{x}_{2}$. Let $\Pi=\left\{\left\{\mathrm{x}_{4}, \mathrm{y}\right\},\left\{\mathrm{x}_{1}\right.\right.$, $\left.x_{3}\right\},\left\{x_{2}\right\}$, all other singletons $\}$. Then $c_{\Pi}\left(x_{1}\right)=(2,0,1, \ldots \ldots)$, $\mathrm{c}_{\Pi}\left(\mathrm{x}_{2}\right)=(1,1,0, \ldots \ldots), \mathrm{c}_{\Pi}\left(\mathrm{x}_{3}\right)=(1,0,1, \ldots \ldots),. \mathrm{c}_{\Pi}\left(\mathrm{x}_{4}\right)=$ $(0,0,2, \ldots \ldots), c_{\Pi}(y)=(0,2,1, \ldots \ldots)$.
Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-2$.
If $P_{4}$ in $\left\langle V_{2}\right\rangle$ does not contain a pendent vertex attached with an internal vertex of $\mathrm{P}_{4}$. Then, $\mathrm{pd}_{\text {is }}(\mathrm{G}) \geq \mathrm{n}-2$.
Let $x_{1}, x_{2}, x_{3}, x_{4}$ be a diametrical path of $\left\langle V_{2}\right\rangle$. Let $\Pi=\left\{\left\{x_{1}\right.\right.$, $\left.x_{3}\right\}$, all other singletons $\}$ Then $x_{1}, x_{3}$ are resolved by $x_{4}$. Suppose $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-2$. Suppose $\mathrm{x}, \mathrm{y}, \mathrm{z}$ belong to $\mathrm{V}_{2}$ such that $<\{x, y, z\}>$ is not connected. Let $\Pi=\{\{x, y, z\}$, all other singletons $\}$. Suppose x and y are adjacent and z is not adjacent with $x$, as well as $y$. Then $d(x, z)$ or $d(y, z)=2$. Suppose $d(y$, $z)=2$. Let $y, z_{1}, z$ be the path between $y$ and $z$. Then $y$ and $z$ are at equal distance from any vertex other than x . Therefore, $\Pi$ is not resolving. Suppose $x_{1}, x_{2}, x_{3}, x_{4} \in V_{2}$ such that $x_{1}$ and $x_{3}$ are independent and $x_{2}$ and $x_{4}$ are independent. Then $V_{2}$ contains an induced subgraph H which is obtained from a complete graph $\mathrm{H}_{1}$ by attaching two pendent vertices one each a two vertices of $\mathrm{H}_{1}$ and removing one or more edges at a vertex other than vertices at which a pendent is attached, leaving atleast one edge. Then there exist an isolate vertex resolving partition $\Pi$ such that $\Pi$ contains two doubletones.

Then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-2$. Therefore, if G satisfies the hypothesis then $\operatorname{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$.
Conversely, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G})=\mathrm{n}-1$. Then clearly the conditions are satisfied.
Result: $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-2$ if G is a double star $\mathrm{D}_{\mathrm{r}, \mathrm{s}}$ where $\mathrm{r}, \mathrm{s} \geq 2$.
Proof: When $\mathrm{r}=1, \mathrm{~s}=2$ we have

$\Pi=\{\{1,4\},\{2,5\},\{3\}\}$.Now, $\mathrm{c}_{\Pi}(1)=(0,1,2), \mathrm{c}_{\Pi}(4)=(0,2$, $1), \mathrm{c}_{\Pi}(2)=(1,0,1), \mathrm{c}_{\Pi}(5)=(2,0,1)$. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq 3$.
Let $r$ and $s \geq 2$. Let $u_{1}, u_{2}, \ldots, u_{r}$ be the pendents at the center $u$ and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{s}}$ be the pendents at the centre v . Then $\Pi=$ $\left\{\left\{\mathrm{u}_{1}, \mathrm{v}_{1}\right\},\left\{\mathrm{u}_{2}, \mathrm{v}_{2}\right\},\left\{\mathrm{x}_{\mathrm{i}}\right\}\right\}$, where $3 \leq \mathrm{i} \leq \mathrm{s}+\mathrm{r}-2$ is an isolate vertex resolving partition. Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-2$.
Lemma: Let G be a connected graph with order greater than or equal to 4 . Let $u_{1}, u_{2}, u_{3}, u_{4}$ be four vertices of $G$ such that $u_{1}$, $u_{2}$ are non-adjacent, $u_{3}$ and $u_{4}$ are non-adjacent and there exist a vertex v , whose distances from $\mathrm{u}_{1}$ and $\mathrm{u}_{2}$ are not equal and there exist a vertex $w$, whose distance from $u_{3}$ and $u_{4}$ are not equal. Then $\operatorname{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-2$.

Proof: Let $\Pi=\left\{\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\},\left\{\mathrm{u}_{3}, \mathrm{u}_{4}\right\},\{\mathrm{v}\},\{\mathrm{w}\}\right.$, singletons $\}$. v resolves $u_{1}$ and $u_{2}$ and $w$ resolves $u_{3}$ and $u_{4}$. Therefore $\Pi$ is an isolate vertex resolving partition of G . Therefore, $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-$ 2.

Lemma: Let G be a connected graph with order greater than or equal to 4 . Let $u_{1}, u_{2}, u_{3}$ be three vertices such that $<\left\{u_{1}, u_{2}\right.$, $\left.\mathrm{u}_{3}\right\}>$ is disconnected. If there exist vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$ such that $d\left(u_{1}, v_{1}\right) \neq d\left(u_{2}, v_{1}\right), d\left(u_{2}, v_{2}\right) \neq d\left(u_{3}, v_{2}\right)$ and $d\left(u_{1}, v_{3}\right) \neq d\left(u_{3}\right.$, $\mathrm{v}_{3}$ ), then $\mathrm{pd}_{\mathrm{is}}(\mathrm{G}) \leq \mathrm{n}-2$.
Proof. Obvious.

## References

G.Chartrand, L.Eroh, M. Johnson and O.R.Oellermann: Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics Vol. 105, Issue 13pp. 99-113,(2000).
G.Chartrand, E.Salehi and P.Zhang: The partition dimention of a graph, A equations Math. 59 (2000), 45-54.
Chatrand, D.Erwin, M.A.Henning, P.J.Slater and P.Zhang: Graphs of order n with locating chromic number $\mathrm{n}-1$., Disc. Math., 269 (2003), 65-79.
G.Chatrand, F.Okamoto and P.zhang, the matric chomic number of a graph, Australian Journal of Combinatorics, 44 (2009), 273-286
S.Hemalathaa, A.Subramanian, P. Aristotle and V.Swaminathan: Isolate Vertex Resolving Partition in a Graph , International Journal of Latest Engineering and Management Research, Vol.2, Issue 08, August 2017, pp. 1-3.
S.Hemalathaa, A.Subramanian, P. Aristotle and V.Swaminathan: Equivalence Resolving Partition of a Graph, Communicated.
V.Saenphophat and P.Zhang, Connected partition dimentions of graphs, Discuss. Math. Graph Theory, 22 (2002), 305-323.
P.J.Slater: Leaves of trees in: Proc $6^{\text {th }}$ Southeast Conf. Comb., Graph Theory, Comput; Boca Raton, 14 (1975), 549-559.
P.J.Slater: Dominating and reference sets in graphs, J.Math. Phys. Sci.22(1988), 445-455.

## How to cite this article:

Hemalathaa S et al (2018) 'A Generalization of Independent Resolving Partition of A Graph', International Journal of Current Advanced Research, 07(2), pp. 10165-10171. DOI: http://dx.doi.org/10.24327/ijcar.2018.10171.1710


[^0]:    *Corresponding author: Hemalathaa S
    Department of Mathematics, The M.D.T. Hindu College, Thirunelveli- 627010, Tamilnadu, India

