International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: SJIF: 5.995 Available Online at www.journalijcar.org Volume 7; Issue 2(H); February 2018; Page No. 10165-10171 DOI: http://dx.doi.org/10.24327/ijcar.2018.10171.1710

A GENERALIZATION OF INDEPENDENT RESOLVING PARTITION OF A GRAPH

Hemalathaa S*1, Subramanian A2, Aristotle P3 and Swaminathan V4

^{1,2}Department of Mathematics, The M.D.T. Hindu College, Thirunelveli- 627010, Tamilnadu, India ³Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai – 630561, Tamilnadu, India ⁴Ramanujan Research Centre in Mathematics, Saraswathi Narayan College, Madurai-625022, Tamilnadu, India

ARTICLE INFO ABSTRACT

Article History:

Received 25th November, 2017 Received in revised form 13th December, 2017 Accepted 10th January, 2018 Published online 28th February, 2018

Key words:

Resolving partition, Partition dimension, Isolate vertex resolving partition.

Let G = (V, E) be a simple connected graph. A partition $\pi = \{V_1, V_2, V_3, ..., V_k\}$ is called a resolving partition of G if for any $u \in V(G)$, the code of u with respect to π (denoted by $c_{\pi}(u)$) namely $(d(u, V_1), d(u, V_2), ..., d(u, V_k))$ is distinct for different $u \in V(G)$ where $d(u, V_i) = \min\{d(u, x) / x \in V_i\}$. The minimum cardinality of a resolving partition of a graph G is called the partition dimension of G and is denoted by pd (G)[2]. Several types of resolving partition have been considered like connected resolving partition [7], metric chromatic number of a graph (that is, independent resolving partition) [4], equivalence resolving partition [6] etc. A new type of resolving partition called isolate vertex resolving partition was introduced in [5]. This partition is a generalization of an independent resolving partition. A detailed study of this partition is done in this paper.

Copyright©2018 Hemalathaa S et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Definition: [2] Let G = (V, E) be a simple, finite, connected and undirected graph. A partition $\prod = \{V_1, V_2, ..., V_k\}$ of V (G) is called a resolving partition of G if the code

 $c_{\Pi}(u) = (d(u, V_1), d(u, V_2),..., d(u, V_k))$ is different for different $u \in V(G)$ where $d(u, V_i) = \min\{d(u, x)/x \in V_i\}$. The minimum cardinality of a resolving partition of a graph G is called the partition dimension of G and is denoted by pd (G).

Definition: [5] Let G = (V, E) be a simple, finite, connected and undirected graph. Let $\prod = \{V_1, V_2, ..., V_k\}$ be a partition of V(G). If each $\langle V_i \rangle$ contains an isolate and if \prod is a resolving partition, then \prod is called an isolate vertex resolving partition. The trivial partition namely

 $\Pi = \{\{u_1\}, \{u_2\}, \dots, \{u_n\}\} \text{ where } V(G) = \{u_1, u_2, \dots, u_n\} \text{ is an isolate vertex resolving partition. The minimum cardinality of an isolate vertex resolving partition is called the isolate vertex partition dimension of G and is denoted by <math>pd_{is}(G)$.

Definition: A double star is a graph obtained by taking two stars and joining the vertices of maximum degrees with an edge.

Remark: [5] Every independent resolving partition is an isolate vertex resolving partition. Therefore, $pd_{is}(G) \le ipd(G) \le pd(G)$.

*Corresponding author: Hemalathaa S

Department of Mathematics, The M.D.T. Hindu College, Thirunelveli- 627010, Tamilnadu, India

Characterizations

Lemma: Let G be a connected graph with $pd_{is}(G) = n = |V(G)|$. Let a pendent vertex x be attached at a single vertex of G. Let H be the resulting graph. Let $G = \langle V_1 \rangle + \langle V_2 \rangle$ where $\langle V_1 \rangle$ and $\langle V_2 \rangle$ are connected and diam $(\langle V_1 \rangle)$, diam $(\langle V_2 \rangle)$ less than or equal to 2. Let x be attached to $u_1 \in V_1$. Then $pd_{is}(H) = |V(H)| - 1$ if and only if any pd_{is} - partition \prod of H containing a set W with $x \in W$ and $|W| \ge 3$, there exist y, $z \in W$ such that y and z are non-adjacent.

Proof: Suppose the condition of the hypothesis in the theorem is satisfied. Suppose $pd_{is}(H) = |V(H)| - 1$. Then no pd_{is} - partition of H can contain a set W with $|W| \ge 3$. Conversely, suppose any pd_{is} - partition \prod of H containing a set W with $x \in W$, and $|W| \ge 3$, then there exist y, $z \in W$ such that y and z are nonadjacent. Then $pd_{is}(H) \le |V(H)| - 2$. Let $\prod = \{W_1, W_2, ..., W_r\}$ be a pd_{is} - partition of H, where $r \le |V(H)| - 2$. Let $|W_i| \ge 3$. Let $x \in W_i$. Let $u_1, u_2 \in W_i \cap V(G)$ be non-adjacent. Then $\prod_1 = \{W_1, W_2, ..., \{u_1, u_2\}$, all singletons omitting x}. $\{x, u_1, u_2\}$ is an element of \prod and hence u_1, u_2 are resolved by some $W_i \subseteq V(G)$. Therefore \prod_1 is an isolate resolving partition of G. Therefore $pd_{is}(G) \le |\prod_1| \le n - 1$, a contradiction. Therefore, $pd_{is}(H) = |V(H)| - 1$. ★

Remark: The condition that there exist $y, z \in W$ with $|W| \ge 3$, $x \in W$ and y, z are non-adjacent cannot be dropped. For,

Let $\prod = \{\{x, u_4, u_5\}, \{u_1\}, \{u_2\}, \{u_3\}\}$. Then $c_{\prod}(x) = (0, 2, 2, 1), c_{\prod}(u_4) = (0, 1, 1, 1), c_{\prod}(u_5) = (0, 1, 1, 2).$

Lemma: Let G be a connected graph with $pd_{is}(G) = n = |V(G)|$. Let a pendent vertex x be attached at a single vertex of G. Let H be the resulting graph. Let $G = \langle V_1 \rangle + \langle V_2 \rangle$ where $\langle V_1 \rangle$ and $\langle V_2 \rangle$ are connected and diam $(\langle V_1 \rangle)$, diam $(\langle V_2 \rangle)$ less than or equal to 2 and neither $\langle V_1 \rangle$ nor $\langle V_2 \rangle$ contains a K₃ with a pendent vertex. Let x be attached to $u_1 \in V_1$. Then $pd_{is}(H) = |V(H)| - 1$ if and only if any pd_{is} - partition \prod of H containing exactly two two-elements sets W_1 , W_2 each with cardinality 2 such that $x \in W_1$ and x is adjacent with exactly one element, (say) u_3 of $W_2 = \{u_2, u_3\} \subseteq V(G)$, then either u_2 is adjacent with $u_1 \in W_1 - \{x\}$ or u_3 is adjacent with u_1 or both u_2 and u_3 are adjacent with u_1 .

Proof. Let $x \notin W_1 \cup W_2$. Then W_1 , $W_2 \subseteq V$ (G). Since \prod contains exactly two two- element sets, $\{x\} \in \prod$. Since x is adjacent exactly one vertex of V (G), both W_1 and W_2 cannot be resolved by x. Therefore, atleast one of W_1 , W_2 is resolved by a set $W_3 \subseteq V$ (G). Therefore, $\prod - \{x\}$ is an isolate vertex resolving partition of G. Therefore, $\prod - \{x\} \le n - 2$, a contradiction.

Let $x \in W_1$. (similar proof if $x \in W_2$). Let $W_1 = \{x_1, u_1\}$, $W_2 = \{u_2, u_3\}$.

Case (i): x is not adjacent with u_2 as well as u_3 .

Then either W_2 is resolved by u_1 or by any set in \prod which contains only elements of V(G). In any case, $\prod - \{x\}$ is an isolate vertex resolving partition of G, a contradiction.

Case (ii): x is adjacent with exactly one of u_2 , u_3 (say) u_3 .

That is x is adjacent with u_3 , x is not adjacent with u_2 . By hypothesis, either u_1 adjacent with u_2 or adjacent with u_3 or both.

Subcase (i): u_1 is adjacent with u_2 .

Then $\{u_2, u_3\}$ is not resolved by $\{x, u_1\}$. Therefore there exist some set of \prod containing only elements of G which resolves $\{u_2, u_3\}$. Therefore, $\prod - \{x\}$ is an isolate resolving partition of G, a contradiction.

Subcase (ii): u_1 is not adjacent with u_2 . Then u_1 is adjacent with u_3 . Therefore, W_1 - {x} resolves W_2 . Therefore, $\prod - \{x\}$ is an isolate resolving partition of G, a contradiction.

Remark: The condition that either u_2 is adjacent with $u_1 \in W_1$ - $\{x\}$ or u_3 is adjacent with u_1 or both u_2 and u_3 are adjacent with u_1 cannot be dropped. For,

Let $\Pi = \{\{u_1, x\}, \{u_2, u_3\}, \{u_4\}, \{u_5\}, \{u_6\}, \{u_7\}\}$. Then $c_{\Pi}(u_1) = (0, 2, 1, ...), c_{\Pi}(x) = (0, 1, 2, ...), c_{\Pi}(u_2) = (2, 0, 1, ...), c_{\Pi}(x) = (1, 0, 1, ...)$. Π is an isolate resolving partition of H. Therefore, $pd_{is}(H) \le |\Pi| = 6 = 8 - 2 = |V(H)| - 2$.

Let $\Pi = \{\{u_1\}, \{u_2, u_3\}, \{u_4\}, \{u_5\}, \{u_6\}, \{u_7\}\}$. Then Π is not an isolate resolving partition of G.

In fact, $pd_{is}(G) = |V(G)| = 7$. In this example, u_1 and u_3 are not adjacent with u_2 .

Remark: Let G be a connected graph. If two independent vertices say x_1 , x_2 are resolved by a vertex of G and for any two independent vertices say x_3 , x_4 with $\{x_3, x_4\} \neq \{x_1, x_2\}$, x_3 and x_4 are not resolved by any vertex of G, then $pd_{is}(G) \leq n-1$

Proof: Obvious.

Lemma: Let G be a tree. $pd_{is}(G) = n - 1$ if and only if $G = P_4$.

Proof: Let G be a tree and let $pd_{is}(G) = n - 1$. Then diam(G) ≤ 3 . If diam (G) = 1 then G = K₂ and $pd_{is}(G) = 2$, a contradiction. If diam(G) = 2, then G is a star and $pd_{is}(G) = |V(G)|$, a contradiction. Let diam(G) = 3. Then G is a double star $D_{r,s}$. If r = s = 1, then $G = P_4$ and $pd_{is}(G) = 3 = |V(G)| - 1$. If r (or) $s \geq 2$, then $pd_{is}(G) = 3 = |V(G)| - 1$.

|V(G)| = 2, a contradiction. Therefore, if G is a tree and $pd_{is}(G) = n-1$, then $G = P_4$.

The converse is obvious.

Lemma: Let G be a unicyclic graph. Then $pd_{is}(G) = n-1$ if and only if $G = K_3$ with one or more pendent vertices at a single vertex or C₄ with a pendent vertex.

*

Proof: Let G be a unicyclic graph with $pd_{is}(G) = n - 1$. Suppose diam (G) \geq 4. Let v₁, v₂, v₃, v₄, v₅ be an induced path of length 4 in G. Then $\prod = \{\{v_1, v_3\}, \{v_2, v_4\}, \{v_5\}, \text{ singletons}\}$ is an isolate vertex resolving partition of G. Therefore, pd_{is}(G) \leq n-2, a contradiction. Therefore, diam (G) \leq 3. If G contains C_n (n \ge 8), then diam (G) \ge 4, a contradiction. Suppose G contains C_7 . Then there is no path attached at any vertex of C_7 , since diam (C₇) = 3. If G = C₇, then $pd_{is}(G) \leq 5$, a contradiction. Suppose G contains C_6 . Then also there is no path attached at any vertex of C₆. pd_{is} (C₆) \leq 4. Suppose G contains C₅. If $G = C_5$, then $pd_{is}(G) = 3$, a contradiction. If G contains C_5 and a pendant vertex, then diam (G) = 3 and $pd_{is}(G) \le 4$, a contradiction. Suppose G contains C₄. If $G = C_4$, then $pd_{is}(G) = 4$, a contradiction. If G contains C₄ and a pendent vertex, then diam (G) = 3 and $pd_{is}(G) = 4$. If G is C₄ with two pendent vertices one each at two vertices of C4 or two or more pendent vertices at a single vertex of C4, then diam (G) = 3 and $pd_{is}(G) \le |V(G)| - 2$. Suppose G contains C₃. If G = C_3 , then $pd_{is}(G) = 3$, a contradiction. If G is C_3 with one or more pendent vertices at a single vertex, then $pd_{is}(G) = 3$. If G is C₃ with a P₂ attached at a vertex, then diam (G) = 3 and pd_{is} (G) \leq 3, a contradiction. If G is C₃ with two pendent vertices

attached one each at two vertices of C_3 , then $pd_{is}(G) \le 3$, a contradiction.

The converse is obvious.

Result: $pd_{is}(G) \le n - 1$ if and only if for any partition of V(G) into V₁, V₂ such that

 $\begin{array}{l} G = < V_1 > + < V_2 > \ , \ if < V_i > \ is \ connected, \ i \in \{1, 2\} \ then \ diam \\ (< V_i >) \ \geq 3 \ or \ if < V_i > \ is \ disconnected, \ then \ there \ exist \ an \ edge \ in < V_i > \ or < V_i > \ is \ connected \ and \ contains \ a \ K_3 \ with \ a \ pendent \ vertex \ as \ an \ induced \ subgraph. \end{array}$

For, Let us consider the following graph G.

Let $\Pi = \{\{u_1, u_4\}, \{u_2\}, \{u_3\}, \{u_5\}, \{u_6\}, \{u_7\}\}$. Then $c_{\Pi}(u_1) = (0, 1, 2, 1, 1, 1); c_{\Pi}(u_4) = (0, 1, 1, 1, 1, 1)$. Π is an isolate resolving partition of G. Therefore, $pd_{is}(G) \le n-1$.

Theorem: Let G be a connected graph. Then $pd_{is}(G) = n - 1$ if and only if either for any three vertices u_1 , u_2 , u_3 such that $\langle u_1, u_2, u_3 \rangle$ is disconnected, $d(u_1, v) = d(u_2, v)$ for any

 $v \in V (G), v \notin \{u_1, u_2, u_3\} \text{ or } d(u_2, v) = d(u_3, v) \text{ for every } v \in V (G), v \notin \{u_1, u_2, u_3\} \text{ or } d(u_1, v) = d(u_3, v) \text{ for every } v \in V (G), v \notin \{u_1, u_2, u_3\} \text{ or for any four vertices } u_1, u_2, u_3, u_4 \text{ such that } u_1 \text{ and } u_2 \text{ are not adjacent, } u_3 \text{ and } u_4 \text{ are not adjacent and } d(u_1, v) = d(u_2, v) \text{ for every } v \in V (G), v \neq u_1, u_2 \text{ and } d(u_3, v) = d(u_4, v) \text{ for every } v \in V (G), v \neq u_3, u_4 \text{ and } d(u_3, v) = d(u_4, v) \text{ for every } v \in V (G), v \neq u_3, u_4 \text{ and } G \text{ is such that for any partition of V(G) into subsets } V_1 \text{ and } V_2, \text{ either } G \neq < V_1 > + < V_2 > \text{ or if } G = < V_1 > + < V_2 >, \text{ then if } < V_i >, i = 1 \text{ or } 2 \text{ is connected, then its diameter greater than or equal to } 3 \text{ or if } < V_i > \text{ is disconnected, then there exist an edge in } < V_i >.$

Proof: If G satisfies the conditions in the theorem, $pd_{is}(G) \neq n$ and $pd_{is}(G) > n - 2$. Therefore

 $pd_{is}(G) = n - 1$. If $pd_{is}(G) = n - 1$, then the conditions of the theorem are obviously satisfied.

Paths and Cycles

Theorem: $pd_{is}(G) = 2$ if and only if $G = P_2$.

Proof: Let $pd_{is}(G) = 2$. Let $= \{V_1, V_2\}$ be an isolate vertex resolving partition of V (G). Suppose $|V(G)| \ge 3$. Let $V_1 = \{u_1, \dots, u_n\}$ u_2, \ldots, u_k and $V_2 = \{v_1, v_2, \ldots, v_r\}$. Since is \prod an isolate vertex resolving partition, d (ui, V2) is different for every i and d (V₁, u_i) is different for every j. since $|V(G)| \ge 3$, at least one of V₁, V₂ has at least two elements. Let $|V_1| \ge 2$. Then there exist a vertex $u \in V_1$ such that $d(u, V_2) \ge 2$. Let $d(u, V_2) = r$ ≥ 2 . Let u, w₁, w₂,..., w_{r-1}, v₁ be the shortest path from u to V₂. Then $w_1, w_2, \dots, w_{r-1} \in V_1$. d $(v_j, V_1) = 1$.Let x be an isolate of V_1 . Then $d(x, V_2) = 1$. That is there exist $y \in V_2$ such that $d(x, V_2) = 1$. y) =1.Clearly, $x \notin \{u_1, w_1, w_2, ..., w_{r-1}\}$. Therefore, $d(v_1, V_1) =$ $d(y, V_1) = 1$. If $v_i \neq y$, then v_i and y are not resolved. If $v_i =$ y,then x and w_{r-1} are not resolved, a contradiction. Therefore $|V(G)| \le 2$. Clearly, |V(G)| = 2. That is $G = P_2$. The converse is obvious *

Theorem 3.2. $pd_{is}(P_n) = \begin{cases} 2 \text{ if } n = 2\\ 3 \text{ if } n \ge 3 \end{cases}$

Proof: Obviously $pd_{is}(P_2) = 2$, $pd_{is}(P_3) = 3 = pd_{is}(P_4)$. Let $n \ge 5$. Let $V(P_n) = \{u_1, u_2, ..., u_n\}$. Let $\Pi = \{\{u_1, u_4, u_6, u_8, ...\}, \{u_2, u_5, u_7, ...\}, \{u_3\}\}$. Clearly, Π is an isolate vertex resolving partition of P_n . Therefore $pd_{is}(P_n) \le 3$. If $pd_{is}(P_n) = 2$, then n = 2, a contradiction by previous theorem. Therefore, $pd_{is}(P_3) = 3$.

 \star

Theorem: Let $n \ge 3$. Then $pd_{is}(C_n) = \begin{cases} 3 \text{ if } n \ne 4 \\ 4 \text{ if } n = 4 \end{cases}$

Proof. It can be seen that, $pd_{is}(C_3) = 3$, $pd_{is}(C_4) = 4$.

When n = 5, $\prod = \{\{1, 3, 4\}, \{2\}, \{5\}\}\)$ is an isolate vertex resolving partition of G. Therefore,

 $pd_{is}(C_5) \le 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_5) = 3$.

Let $n \ge 6$.

Case (i): When $n = 6k, k \ge 1$.

Subcase(i): k is even

Let $\prod = \{\{1, 4, 6, 8, ..., 3k, 3k + 2, 3k + 3, ..., 6k - 1\}, \{2, 5, 7, 9, ..., 3k + 1, 3k + 4, 3k + 6, ..., 6k\}, \{3\}\}$. Then \prod is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k}) \le 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_{6k}) = 3$. Subcase(ii): k is odd.

Let $\prod = \{\{1, 4, 6, 8, ..., 3k+1, 3k+3, 3k+4, 3k+6, ..., 6k-1\}, \{2, 5, 7, 9, ..., 3k, 3k+2, 3k+5, ..., 6k\}, \{3\}\}$. Then \prod is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k}) \le 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_{6k}) = 3$. Case (ii): When $n = 6k+1, k \ge 1$.

Subcase(i): k is even.

Let $\Pi = \{\{1, 2, 5, 7, ..., 3k+3, 3k+5, ..., 6k+1\}, \{3, 6, 8, 10, ..., 3k+4, 3k+6, ..., 6k\}, \{4\}\}$. Then Π is an isolate vertex resolving partition of G. Therefore, $pd_{is} (C_{6k+1}) \le 3$. But $pd_{is} (G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is} (C_{6k+1}) = 3$. Subcase(ii): k is odd.

Let $\Pi = \{\{1, 2, 5, 7, ..., 3k+4, 3k+6, ..., 6k+1\}, \{3, 6, 8, 10, ..., 3k+3, 3k+5, ..., 6k\}, \{4\}\}$. Then Π is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k+1}) = 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_{6k+1}) = 3$. Case (iii): When n = 6k+2, $k \ge 1$.

Subcase(i): k is even.

Let ={{1, 4, 6, 8,..., 3k + 4, 3k + 5, 3k + 7,..., 6k + 1}, {2, 5, 7, 9, ..., 3k + 3, 3k + 6,..., 6k + 2}, {3}}. Then \prod is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k+2}) \le 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_{6k+2}) = 3$. Subcase(ii): k is odd.

Let $\Pi = \{\{1, 4, 6, 8, \dots, 3k + 3, 3k + 4, 3k + 6, \dots, 6k + 1\}, \{2, 5, 7, 9, \dots, 3k + 2, 3k + 5, \dots, 6k + 2\}, \{3\}\}$. Then Π is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k+2}) \le 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_{6k+2}) = 3$. Case (iv): When n = 6k+3, $k \ge 1$. Subcase(i): k is even.

Let $\Pi = \{\{1, 4, 6, 8, ..., 3k+4, 3k+6, ..., 6k+2\}, \{2, 5, 7, 9, ..., 3k+3, 3k+5, ..., 6k+3\}, \{3\}\}$. Then Π is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k+3}) \le 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_{6k+3}) = 3$. Subcase(ii): k is odd.

Let $\Pi = \{\{1, 4, 6, 8, ..., 3k+3, 3k+5, ..., 6k+2\}, \{2, 5, 7, 9, ..., 3k+4, 3k+6, ..., 6k+3\}, \{3\}\}$. Then Π is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k+3}) \le 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_{6k+3}) = 3$.

Case (v): When n = 6k+4, $k \ge 1$. Subcase(i): k is even.

Let $\Pi = \{1, 4, 6, 8, \dots, 3k+2, 3k+4, 3k+5, 3k+7, \dots, 6k + \}$ 3, {2,5,7,9,..., 3k+3,3k+6,3k+8, ..., 6k+4}, {3}}. Then \prod is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k+4})$ \leq 3. But pd_{is} (G) = 2 if and only if G = P₂. Therefore, $pd_{is}(C_{6k+4}) = 3.$ Subcase(ii): k is odd.

Let $\Pi = \{\{1,4,6,8,\dots,3k+3,3k+5,3k+6,3k+8,\dots\}$ 3, {2,5,7,9,...,3k+2, 3k+4,3k+7, ...,6k+4}, {3}}. Then \prod is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k+4})$ \leq 3. But pd_{is}(G) = 2 if and only if G = P₂. Therefore, pd_{is}

 $(C_{6k+4}) = 3.$

Case (vi): When n = 6k+5, $k \ge 1$.

Subcase(i): k is even.

Let $\Pi = \{\{1, 4, 6, 8, \dots, 3k+4, 3k+6, \dots, 6k + 4\}, \{2, 5, 7, \dots, 6k + 4\}, \{3, 3k+6, \dots, 6k + 4\}, \{4, 5, 7, \dots, 6k + 4\}, \{4, 5, \dots, 6k + 4\}, \{4, 5, 1, \dots, 6k + 4\}, \{4, 5, \dots, 6k + 4\}, \{4, 1, \dots, 6k\}, \{4, 1, \dots, 6k + 4\}, \{4, 1, \dots, 6k\}, \{4, \dots, 6k,$ 9,..., 3k+5, 3k+7,..., 6k+5}, $\{3\}$ }. Then \prod is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k+5}) \le 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_{6k+5}) = 3$. Subcase (ii): k is odd.

Let $\prod = \{\{1, 4, 6, 8, \dots, 3k+3, 3k+5, 3k+7, \dots, 6k+4\}, \{2, 5, 7, \dots, 6k+4\}, \{3, 5, 2, \dots, 6k+4\}, \{3, 5, \dots, 6k+4\}, \{3, 1, \dots, 6k+4\}$ 9,..., 3k+2, 3k+4, 3k+6,..., 6k+5}, $\{3\}$ }. Then \prod is an isolate vertex resolving partition of G. Therefore, $pd_{is}(C_{6k+5}) \le 3$. But $pd_{is}(G) = 2$ if and only if $G = P_2$. Therefore, $pd_{is}(C_{6k+5}) = 3$.

Let $\mathbf{H} = \{$ Connected graphs G of order $n \ge 3$ such that $\mathbf{H} = \mathbf{G} - \mathbf{H}$ $\{v\}$ is a complete multipartite graph for some vertex v of G $\}$. Let $\mathbf{F} = \{ G \in \mathbf{H} \text{ satisfying one of the following properties (i)} \}$ For every integer i, with $1 \le i \le k$, $a_i \in \{0, n_i\}$ and there are at least two distinct integers j, j', $1 \le j$, $j' \le k$ for which $a_i = a_i' = 0$ (ii) There is exactly one integer j with $1 \le j \le k$ such that $0 \le a_j \le n_j$ and $a_j = n_j - 1$, for this integer j. Let $\mathbf{G} = \{\mathbf{G} = \mathbf{G}_n + \mathbf{G} = \mathbf{G}_n + \mathbf{G}_n +$ $2k_2$ where G_n is a complete multipartite graph of order $n - 4 \ge 1$ 1}.

In [3], Graphs of order n containing an induced complete multipartite subgraph of order n - 1 are used to characterize all connected graphs of order $n \ge 4$ with locating chromatic number n - 1.

Theorem: $pd_{is}(G) = n - 1$ if and only if either $G \in G$ or G is obtained from a complete multipartite graph H with k-partite sets $k \ge 2$ and joining a vertex v to all but one vertex of H and there exist two vertices in the partite set of H which contains the unique vertex non-adjacent with v.

Proof: Suppose $pd_{is}(G) = n - 1$. But $pd_{is}(G) \le ipd(G) \le pd(G)$. Therefore ipd (G) = n or n - 1. If ipd (G) = n, then G is a complete bipartite graph. Then $pd_{is}(G) = n$, a contradiction. Therefore, ipd(G) = n - 1. Therefore, $G \in \mathbf{H} \cup \mathbf{G}$.

Conversely, suppose $G \in H \cup G$. If $G \in G$, then $pd_{is}(G) = n - discrete G$. 1. Suppose $G \in \mathbf{F}$. If the defining property (i) for graphs in \mathbf{F} is satisfied by G, then $pd_{is}(G) \le n - 1$, a contradiction. Therefore G is a graph in \mathbf{F} for which the condition (ii) is satisfied with the additional constraint that there exist 2 vertices in the partite set of H which contains the unique vertex non-adjacent with v.

Bounds on Isolate Vertex Resolving Partition

Theorem: Let G be a connected graph of order $n \ge 5$ containing an induced subgraph

 $H \in \{2K_1 \cup K_2, P_2 \cup P_3, P_2 \cup K_3, P_5, C_5, C_5 + e, H_1, H_2, H_3\}$ where

Then $pd_{is}(G) \le n-2$.

6k +

Proof: Suppose
$$H = 2K_1 \cup K_2$$

1 3
 $H:$

Let $\Pi = \{\{1, 3\}, \{2, 4\}, \dots, \{n\}\}$. Then $c_{\Pi}(1) = (0, d_2, d_3, d_3, d_3)$ $c_{\Pi}(3) = (0, 1, d'_{3}, d'_{4}, \dots, d'_{n}) c_{\Pi}(2)$ d_4, \ldots, d_n), $(d_1^{"}, 0, d_3^{"}, d_4^{"}, \dots, d_n^{"}), c_{\Pi}(4) = (1, 0, d_3^{"}, d_4^{"}, \dots, d_n^{"}).$ Therefore, Π is an isolate vertex resolving partition. Therefore, $pd_{is}(G) \le |\Pi| = n - 2.$ Let $H = P_2 \cup P_3$.

$$H: \begin{bmatrix} 1 \\ \bullet \\ 2 \end{bmatrix} \begin{bmatrix} \bullet \\ \bullet \\ \bullet \\ \bullet \end{bmatrix} = \begin{bmatrix} 3 \\ \bullet \\ 4 \\ \bullet \end{bmatrix}$$

Let $\Pi = \{\{1, 3\}, \{2, 5\}, \{4\}, ..., \{n\}\}$. Then $c_{\Pi}(1) = (0, 1, d_3, d_3)$. $d_4, d_5, ..., d_n$, $c_{\Pi}(3) = (0, 2, d'_3, d'_4, ..., d'_n), c_{\Pi}(2) =$ $(1,0,d_{3}^{"},d_{4}^{"},\ldots,d_{n}^{"}), c_{\Pi}(5) = (2,1,0,d_{4}^{"},d_{5}^{"},\ldots,d_{n}^{"}).$ Therefore, Π is an isolate vertex resolving partition. Therefore, $pd_{is}(G) \le |\Pi| = n - 2.$ Let $H = P_2 \cup K_3$.

Let $\Pi = \{\{1, 3, 5\}, \{2\}, \{4\}, \dots, \{n\}\}$. Then $c_{\Pi}(1) = (0, 1, d_3, d_3)$. $d_4, d_5, \dots d_n), c_{\Pi}(3) = (0, d'_2, 1, \dots, d'_n), c_{\Pi}(5) =$ $(0, \mathbf{d}_{2}^{"}, 1, \dots, \mathbf{d}_{n}^{"})$. Therefore Π is an isolate vertex resolving partition. Therefore $pd_{is}(G) \le |\Pi| = n - 2$.

Let $\Pi = \{\{1, 3\}, \{2, 5\}, \{4\}, \dots, \{n\}\}$. Then $c_{\Pi}(1) = (0, 1, 3, \dots, 1)$ = $(0,1,1,d_{4}^{"},\ldots,d_{n}^{"}) c_{\Pi}(2)$ $d_{4},...,d_{n}),c_{\Pi}(3)$ $(1,0,2,d_{4}^{"},...,d_{n}^{"}) c_{\Pi}(5) = (2,0,1,d_{4}^{"},...,d_{n}^{"}).$ Therefore, Π is an isolate vertex resolving partition. Therefore,

 $pd_{is}(G) \leq |\Pi| = n - 2.$ Let $H = C_5$.

Let $\Pi = \{\{1, 3, 4\}, \{2\}, \{5\}, \dots, \{n\}\}$. Then $c_{\Pi}(1) = (0, 1, 1, d_4, \dots, d_n), c_{\Pi}(3) = (0, 1, 2, d_4^{'}, \dots, d_n^{'}), c_{\Pi}(4) = (0, 2, 1, d_4^{''}, \dots, d_n^{''})$. Therefore, Π is an isolate vertex resolving partition. Therefore, $pd_{is}(G) \le |\Pi| = n - 2$.

Let $H = C_5 + e$

Let $H = C_5 + e$. Let $\Pi = \{\{1, 3, 4\}, \{2\}, \{5\}, ..., \{n\}\}$. Then, $c_{\Pi}(1) = (0, 1, 1, d_4, ..., d_n), c_{\Pi}(3) = (0, 1, 2, d_4', ..., d_n'),$ $c_{\Pi}(4) = (0, 2, 1, d_4', ..., d_n')$. Therefore, Π is an isolate vertex resolving partition. Therefore, $pd_{is}(G) \le |\Pi| = n - 2$. Let $H = H_1$.

Let $\Pi = \{\{1, 2, 5\}, \{3\}, \{4\}, ..., \{n\}\}$. Then $c_{\Pi}(1) = (0, 1, 1, d_{4},...,d_{n})$, $c_{\Pi}(2) = (0,1,2,d_{4}^{'},...,d_{n}^{'})$, $c_{\Pi}(5) = (0,3,1,d_{4}^{''},...,d_{n}^{''})$. Therefore, Π is an isolate vertex resolving partition. Therefore, $pd_{is}(G) \le |\Pi| = n - 2$.

Let $\Pi = \{\{1, 2, 5\}, \{3\}, \{4\}, \dots, \{n\}\}$. Then $c_{\Pi}(1) = (0, 1, 1, d_4, \dots, d_n), c_{\Pi}(2) = (0, 1, 2, d'_4, \dots, d'_n), c_{\Pi}(5) = (0, 3, 1, d''_4, \dots, d''_n)$. Therefore, Π is an isolate vertex resolving partition. Therefore, $pd_{is}(G) \le |\Pi| = n - 2$.

Let $\Pi = \{\{1, 3, 5\}, \{2\}, \{4\}, ..., \{n\}\}$. Then $c_{\Pi}(1) = (0, 2, 2, d_4, ..., d_n)$, $c_{\Pi}(2) = (0, 1, 1, d'_4, ..., d'_n)$, $c_{\Pi}(5) = (0, 3, 1, d'_4, ..., d'_n)$. Therefore, Π is an isolate vertex resolving partition. Therefore, $pd_{is}(G) \le |\Pi| = n - 2$.

Definition: [3] Let G be a connected graph of order atleast three such that H = G - v is a complete multipartite graph for

some vertex v of G. Let $V_1, V_2, ..., V_k, k \ge 2$ denote the partite sets of H. Let $|V_i| = n_i, 1 \le i \le k$ and let $a_i, (1 \le i \le k)$ denote the number of vertices in V_i which are adjacent in G with v. Define $\sigma(G)$ by $\sigma(G) = \sum_{i=1}^k \max \{a_i, n_i - a_i\}$.

Result: There are graphs with G - v a complete multipartite graph for some $v \in V(G)$ such that $pd_{is}(G) = \sigma(G) + 1$. Let H be a complete multipartite graph with partite sets $V_1, V_2, ..., V_k$ and $|V_i| = n_i \ge 1$. Let $n_i \ge 2$ for atleast one i, $1 \le i \le k$. Add a new vertex v to H and make v adjacent with exactly one vertex of each V_i , $1 \le i \le k$. Let G be the resulting graph. Let $V_1, V_2, ..., V_t$ have cardinality 1 and the remaining partite sets have cardinality atleast 2. $\sigma(G) = 1 + 1 + 1 + + 1$ (t - times) + $\sum_{i=t+1}^{k} n_i - 1 = t + n_{t+1} + + n_k - (k-t) = n - 1 - k + t$. Let Π

= { u_{t+1} , ..., u_k , v}, {x}} where x runs over V(G) - { u_{i+1} , ..., u_k , v}. Clearly, Π is a minimum isolate vertex resolving partition of G. Therefore, $pd_{is}(G) = n - (k - t + 1) + 1 = n - k + t = \sigma(G) + 1$.

Lemma: Let G be a connected graph such that G - v is a complete multipartite graph for some vertex $v \in V(G)$. Then $pd_{is}(G) \le \sigma(G) + 1$.

Proof: It has been proved in [3] that $ipd(G) \le \sigma(G) + 1$. But $pd_{is}(G) \le ipd(G)$.

Therefore
$$pd_{is}(G) \le \sigma(G) + 1$$
.

Lemma: Given a positive integer k, there exist a graph G such that $pd_{is}(G) = \sigma(G) - k$.

Proof: Let H be a complete multipartite graph with partite sets $V_1, V_2, ..., V_{k+2}, |V_i| \ge 2$ for all i. Add a vertex v to H and make it adjacent with exactly one vertex of H.

Let $|V_i| = n_i \ (1 \le i \le k + 2)$. $\sigma(G) = n - 2$. Let $\Pi = \{\{v, u_{11}, u_{21}, ..., u_{k+2,1}\}$, singletons $\}$. Therefore, $\Pi = n - (k + 2 + 1) + 1 = n - k - 2$.

Suppose, $pd_{is}(G) \le n - k - 3$. Suppose Π' is a pd_{is} partition of G such that one of the sets in the partition is $\{v\}$. Then there exist one set of the partition containing two elements (namely the adjacent vertex of v and the non-adjacent vertex of v in the set if exist). Therefore, $\Pi' = 1 + 1 + n - 3 = n - 1$. Therefore n $-1 \le n - k - 3$. $k \le -2$, a contradiction.

Suppose, one of the sets say S, of Π' contains v as well as other elements from H. Then S cannot contain the unique adjacent vertex of v in H. It can contain exactly one non-adjacent vertex from each of the partite sets. Therefore, $|S| \leq 1 + k + 2 = k + 3$. Further the remaining sets of Π' must be singletons. Therefore, $|\Pi'| \geq 1 + n - (k + 3) = n - k - 2$. But $|\Pi'| \leq n - k - 3$. Therefore, $n - k - 2 \leq |\Pi'| \leq n - k - 3$, a contradiction. Therefore, $pd_{is}(G) \geq n - k - 2$. Therefore, $pd_{is}(G) = n - k - 2 = \sigma - k$.

Illustration: Let G be obtained from $K_{2,3}$ by adding a new vertex and joining it to a vertex of degree 2 in $K_{2,3}$.

Let $\Pi = \{\{v, u_1, u_4\}, \{u_2\}, \{u_3\}, \{u_5\}\}$. Π is an isolate resolving partition of G. Therefore, $pd_{is} \le 4$. Suppose $pd_{is} = 3$.

Let Π' = {V₁, V₂, V₃} be a pd_{is} – partition of G. Let $v \in V_1$ (say). V_1 can contain at most two elements one from the partite sets of K_{2,3}. The remaining elements which are atleast 3 in number must be accommodated in V2 and V3. Therefore, either V₂ or V₃ contains atleast two elements from K_{2,3}. Suppose V₂ contains atleast two elements from $K_{2,3}$. If $|V_2| = 3$, then $V_2 =$ $\{u_3, u_4, u_5\}$. Then u_4 and u_5 cannot be resolved by V_1 and V_3 . Therefore $|V_2| = 2$. Since elements of V_2 are resolved by V_1 or V_3 , V_2 can contain only u_3 and u_4 . If V_3 contains two elements then it should be u_1 and u_2 , since V_3 has an isolate. But u_1 and u_2 cannot be resolved by any element. Therefore, V_3 contains one element. In this case, V_1 contains three elements. But V_1 can contain only v, u_1 , u_4 a contradiction. (since $u_4 \in V_2$). Therefore, $pd_{is}(G) \neq 3$. $pd_{is}(G) \neq 1$, 2 (since $pd_{is}(G) = 1$ if and only if $G = K_1$, $pd_{is}(G) = 2$ if and only if $G = K_2$). Therefore, $pd_{is}(G) = 4$. $\sigma(G) = 4$. Therefore, $pd_{is}(G) = \sigma(G) = 4$.

Illustration: Let us consider the following graph G.

Now $\sigma(G) = 3 + 1 + 2 + 6$. There are two isolate vertex resolving partition of G namely

 $\begin{aligned} \Pi_1 &= \{ \{v, u_5, u_8\}, \{u_1\}, \{u_2\}, \{u_3\}, \{u_4\}, \{u_6\}, \{u_7\} \} \text{ and } \Pi_2 = \\ \{\{v\}, \{u_4, u_5\}, \{u_7, u_8\}, \{u_1\}, \{u_2\}, \{u_3\}, \{u_6\} \}. \text{Therefore } |\Pi_1| = \\ |\Pi_2| &= 7. \text{ It can easily verified that } pd_{is}(G) = 7. \text{ That is} \\ pd_{is}(G) &= \sigma(G) + 1. \end{aligned}$

Illustration: Let H be a complete multipartite graph. Add a vertex v to H and join v to every vertex of H. Let G be the resulting graph. The graph G is a complete multipartite graph and therefore $pd_{is}(G) = |V(G)|$ and $\sigma(G) = |V(H)|$. Therefore, $pd_{is}(G) = \sigma(G) + 1$.

Theorem: Let H be a complete multipartite graph with kpartite sets, $k \ge 2$. Join a vertex v to H and join v to all but one vertex of H. There exist atleast two vertices in the partite set which contains a non-adjacent vertex of v. Then $pd_{is}(G) = n - 1$.

Proof: Let $\Pi = \{\{v, u_{11}\}, \text{singletons}\}\)$, where u_{11} is the unique vertex not adjacent with v. $|\Pi| = n - 1$. Therefore, $pd_{is}(G) \le n - 1$. In any isolate vertex resolving partition of G, the set containing v, cannot contain two more elements. Also any set in the partition other than the set containing v cannot contain two elements if the set containing v contains two elements. Therefore, there exist exactly one set in the partition containing two elements. Therefore, $pd_{is}(G) = n - 1$. *** Theorem.** Let G be a graph obtained from a complete multipartite graph H by adding a vertex (say) v. Let V_1 , V_2, \dots, V_k be the partitite set of H with $|V_i| = n_i$ ($1 \le i \le k$). Let v be joined with a_i , vertices of V_i ($1 \le i \le k$). Let $a_i = 0$ for atleast two partite sets $a_i = n_i$, for the remaining partite sets. When $a_i = 0$, then the partite set contains atleast two elements. Then $pd_{is}(G) < n - 1$.

 $\label{eq:proof:a} \begin{array}{ll} \textit{Proof:} \ \text{Let Without loss of generality} & a_1=a_2=& \dots, \ t\geq 2 \ \text{and} \ a_i=n_i, \ t+1\leq i\leq k. \end{array}$

Then $\Pi = \{\{v, u_{11}, u_{21}\}, \text{ singletons}\}\$ is an isolate vertex resolving partition of G, where $u_{11} \in V_1$ and $u_{21} \in V_2$. Therefore, $pd_{is}(G) \leq |\Pi| = n \cdot 2 < n - 1$.

Lemma 4.11. Let G be a connected graph of the form H + 2 K₂, where H is a complete multipartite graph of order $n - 4 \ge 1$. Then $pd_{is}(G) = n - 1$.

Proof: Let $V(2K_2) = \{\{u_1, u_2, u_3, u_4\}\}$, where u_1 and u_2 are adjacent and u_3 and u_4 are adjacent. Let $\Pi = \{\{u_1, u_3\}, singletons\}$. Clearly, Π is an isolate vertex resolving partition of G. Therefore, $pd_{is}(G) \le n - 1$. Suppose, $pd_{is}(G) \le n - 2$. Then there exist a pd_{is} partition $\Pi_1 = \{\{V_1, V_2, ..., V_k\}\}$, $k \le n - 2$. Any V_i cannot contain two vertices of H. Therefore, vertices of H must appear as singletons. Suppose V_1 contains u_1 , u_3 , u_4 . Since V_1 has an isolate, V_1 cannot contain any vertex of H. Therefore $V_1 = \{u_1, u_3, u_4\}$. But $c_{\Pi 1}(u_3) = c_{\Pi 1}(u_4)$, a contradiction. Therefore, either V_1 contains u_1 and u_3 or u_2 and u_3 or u_2 and u_4 . Therefore, $|V_1| = 2$. Suppose $V_1 = \{u_1, u_3\}$ and $V_2 = \{u_2, u_4\}$. Therefore, $c_{\Pi 1}(u_1) = c_{\Pi 1}(u_3)$, a contradiction. Therefore, only one of V_1 , V_2 is a doubleton. Therefore, $|\Pi_1| = n - 1$, a contradiction. Therefore, $pd_{is}(G) = n - 1$.

Lemma: Suppose $G = \langle V_1 \rangle + \langle V_2 \rangle$. If $\langle V_1 \rangle$ and $\langle V_2 \rangle$ are connected and diameter of either one or both of $\langle V_1 \rangle$ and $\langle V_2 \rangle$ is 3, then $pd_{is}(G) = n - 1$ if and only if any P_4 in $\langle V_2 \rangle$ does not contain a pendent vertex attached with an internal vertex of P_4 and $\langle V_2 \rangle$ does not contain an induced subgraph H which is obtained from a complete graph H_1 by attaching two pendent vertices one at each two vertices of H_1 and removing one or more edges at a vertex other than the vertices at which a pendent is attached, leaving at least one edge.

Proof: Suppose $G = \langle V_1 \rangle + \langle V_2 \rangle$. Let $\langle V_1 \rangle$ and $\langle V_2 \rangle$ be connected and let diameter of either one or both of $\langle V_1 \rangle$ and $\langle V_2 \rangle$ be 3. Let diam($\langle V_2 \rangle \rangle = 3$. Clearly, $pd_{is}(G) \le n - 1$.

Suppose, P_4 in $\langle V_2 \rangle$ contains a pendent vertex attached with an internal vertex of P_4 . Let x_1, x_2, x_3, x_4 be the vertices of P_4 and y be a pendent attached with x_2 . Let $\Pi = \{\{x_4, y\}, \{x_1, x_3\}, \{x_2\}, all other singletons\}$. Then $c_{\Pi}(x_1) = (2, 0, 1,)$, $c_{\Pi}(x_2) = (1, 1, 0,), c_{\Pi}(x_3) = (1, 0, 1,), c_{\Pi}(x_4) = (0, 0, 2,), c_{\Pi}(y) = (0, 2, 1,)$.

Therefore, $pd_{is}(G) \le n - 2$.

If P_4 in $\langle V_2 \rangle$ does not contain a pendent vertex attached with an internal vertex of P_4 . Then, $pd_{is}(G) \ge n - 2$.

Let x_1, x_2, x_3, x_4 be a diametrical path of $\langle V_2 \rangle$. Let $\Pi = \{ \{x_1, x_2, x_3, x_4 \}$ x_3 , all other singletons} Then x_1 , x_3 are resolved by x_4 . Suppose $pd_{is}(G) \le n - 2$. Suppose x, y, z belong to V₂ such that $\langle \{x, y, z\} \rangle$ is not connected. Let $\Pi = \{\{x, y, z\}, all other\}$ singletons}. Suppose x and y are adjacent and z is not adjacent with x, as well as y. Then d(x, z) or d(y, z) = 2. Suppose d(y, z) = 2. z) = 2. Let y, z_1 , z be the path between y and z. Then y and z are at equal distance from any vertex other than x. Therefore, Π is not resolving. Suppose $x_1, x_2, x_3, x_4 \in V_2$ such that x_1 and x_3 are independent and x_2 and x_4 are independent. Then V_2 contains an induced subgraph H which is obtained from a complete graph H₁ by attaching two pendent vertices one each a two vertices of H₁ and removing one or more edges at a vertex other than vertices at which a pendent is attached, leaving atleast one edge. Then there exist an isolate vertex resolving partition Π such that Π contains two doubletones.

Then $pd_{is}(G) \le n - 2$. Therefore, if G satisfies the hypothesis then $pd_{is}(G) = n - 1$.

Conversely, $pd_{is}(G) = n - 1$. Then clearly the conditions are satisfied. \star

Result: $pd_{is}(G) \le n - 2$ if G is a double star D _{r, s} where r, $s \ge 2$. *Proof:* When r = 1, s = 2 we have

$$G:$$
 $\begin{array}{c}1\\2\\3\end{array}$

$$\begin{split} \Pi &= \{\{1,4\},\{2,5\},\{3\}\}. \text{Now, } c_{\Pi}(1) = (0,1,2), c_{\Pi}(4) = (0,2,1), c_{\Pi}(2) = (1,0,1), c_{\Pi}(5) = (2,0,1). \\ \text{Therefore, } pd_{is}(G) \leq 3. \\ \text{Let } r \text{ and } s \geq 2. \\ \text{Let } u_1, u_2, \dots, u_r \text{ be the pendents at the center } u \\ \text{and } v_1, v_2, \dots, v_s \text{ be the pendents at the centre } v. \\ \text{Then } \Pi &= \{\{u_1, v_1\}, \{u_2, v_2\}, \{x_i\}\}, \text{ where } 3 \leq i \leq s+r-2 \text{ is an isolate } vertex resolving partition. \\ \text{Therefore, } pd_{is}(G) \leq n-2. \\ \end{split}$$

Lemma: Let G be a connected graph with order greater than or equal to 4. Let u_1 , u_2 , u_3 , u_4 be four vertices of G such that u_1 , u_2 are non-adjacent, u_3 and u_4 are non-adjacent and there exist a vertex v, whose distances from u_1 and u_2 are not equal and there exist a vertex w, whose distance from u_3 and u_4 are not equal. Then $pd_{is}(G) \le n - 2$.

Proof: Let $\Pi = \{\{u_1, u_2\}, \{u_3, u_4\}, \{v\}, \{w\}, \text{ singletons}\}$. v resolves u_1 and u_2 and w resolves u_3 and u_4 . Therefore Π is an isolate vertex resolving partition of G. Therefore, $pd_{is}(G) \le n - 2$.

Lemma: Let G be a connected graph with order greater than or equal to 4. Let u_1 , u_2 , u_3 be three vertices such that $\langle u_1, u_2, u_3 \rangle$ is disconnected. If there exist vertices v_1, v_2, v_3 such that d $(u_1, v_1) \neq d(u_2, v_1)$, $d(u_2, v_2) \neq d(u_3, v_2)$ and $d(u_1, v_3) \neq d(u_3, v_3)$, then $pd_{is}(G) \leq n - 2$. **Proof.** Obvious.

References

- G.Chartrand, L.Eroh, M. Johnson and O.R.Oellermann: Resolvability in graphs and the metric dimension of a graph, *Discrete Applied Mathematics* Vol. 105, Issue 1-3pp. 99-113,(2000).
- G.Chartrand, E.Salehi and P.Zhang: The partition dimension of a graph, A equations Math. 59 (2000), 45-54.
- Chatrand, D.Erwin, M.A.Henning, P.J.Slater and P.Zhang: Graphs of order n with locating chromic number n-1., *Disc. Math.*, 269 (2003), 65-79.
- G.Chatrand, F.Okamoto and P.zhang, the matric chomic number of a graph, *Australian Journal of Combinatorics*, 44 (2009), 273-286
- S.Hemalathaa, A.Subramanian, P. Aristotle and V.Swaminathan: Isolate Vertex Resolving Partition in a Graph, *International Journal of Latest Engineering and Management Research*, Vol.2, Issue 08, August 2017, pp. 1-3.
- S.Hemalathaa, A.Subramanian, P. Aristotle and V.Swaminathan: Equivalence Resolving Partition of a Graph, Communicated.
- V.Saenphophat and P.Zhang, Connected partition dimentions of graphs, Discuss. Math. Graph Theory, 22 (2002), 305-323.
- P.J.Slater: Leaves of trees in: Proc 6th Southeast Conf. Comb., Graph Theory, Comput; Boca Raton, 14 (1975), 549-559.
- P.J.Slater: Dominating and reference sets in graphs, *J.Math. Phys. Sci.*22(1988), 445-455.

How to cite this article:

Hemalathaa S et al (2018) 'A Generalization of Independent Resolving Partition of A Graph', International Journal of Current Advanced Research, 07(2), pp. 10165-10171. DOI: http://dx.doi.org/10.24327/ijcar.2018.10171.1710
