

AN INTRODUCTION ON SOFTWARE DESIGN PATTERNS

Department of Computer Science

A R T I C L E I N F O

INTRODUCTION

Designing object-oriented software is hard, and
reusable object-oriented software is even harder. Find
pertinent objects, factor them into classes at the right
granularity, define class interfaces and inheritance hierarchies,
and establish key relationships among them. Design should be
specific to the problem at hand but also general enough to
address future problems and requirements. Avoid redesign, or
at least minimize it.

Yet experienced object-oriented designers do make good
designs. Meanwhile new designers are overwhelmed by the
options available and tend to fall back on non
techniques they've used before. It takes a long time for novices
to learn what good object-oriented design is all about.

One thing expert designers know not to do
problem from first principles. Rather, they reuse solutions that
have worked for them in the past. When they find a good
solution, they use it again and again. Such experience is part of
what makes them experts. Consequently, you'll find rec
patterns of classes and communicating objects in many object
oriented systems. These patterns solve specific design
problems and make object-oriented designs more flexible,
elegant, and ultimately reusable. They help designers reuse
successful designs by basing new designs on prior experience.
A designer who is familiar with such patterns can apply them
immediately to design problems without having to rediscover
them.

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319-6505,
Available Online at www.journalijcar.org
Volume 7; Issue 2(E); February 2018
DOI: http://dx.doi.org/10.24327/ijcar.2018

Article History:

Received 18th November, 2017
Received in revised form 4th
December, 2017
Accepted 23rd January, 2018
Published online 28th February, 2018

Key words:

Design patterns, information visualization,
software engineering, object-oriented
programming

Copyright©2018 Deepa Raj. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Corresponding author: Deepa Raj
Department of Computer Science, BBAU (Central
Lucknow

AN INTRODUCTION ON SOFTWARE DESIGN PATTERNS

Deepa Raj*

Department of Computer Science, BBAU (Central University) Lucknow

 A B S T R A C T

Design patterns constitute a set of rules describing how to accomplish certain tasks in the realm of
software development. Software design patterns are recognized as a valuable part of good engineering
practices. Capture successful solutions in design patterns, abstract descriptions of interacting
components that can be customized to solve design problems within a particular context. This paper
discussed about how design pattern is useful for design a software using the concepts of GOF design
patterns classification such as structural, creational and behavioral design pattern

oriented software is hard, and designing
oriented software is even harder. Find

pertinent objects, factor them into classes at the right
granularity, define class interfaces and inheritance hierarchies,

s among them. Design should be
specific to the problem at hand but also general enough to
address future problems and requirements. Avoid redesign, or

oriented designers do make good
gners are overwhelmed by the

options available and tend to fall back on non-object-oriented
techniques they've used before. It takes a long time for novices

oriented design is all about.

to do is solve every
problem from first principles. Rather, they reuse solutions that
have worked for them in the past. When they find a good
solution, they use it again and again. Such experience is part of
what makes them experts. Consequently, you'll find recurring
patterns of classes and communicating objects in many object-
oriented systems. These patterns solve specific design

oriented designs more flexible,
elegant, and ultimately reusable. They help designers reuse

ns by basing new designs on prior experience.
A designer who is familiar with such patterns can apply them
immediately to design problems without having to rediscover

What is a Design Pattern

Christopher Alexander says, "Each pattern describes a problem
which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a
way that you can use this solution a million times over,
without ever doing it the same way twice".

Definitions
Some definitions are

“Design patterns constitute a set of rules describing how to
accomplish certain tasks in the realm of software
development.” [Pree (94)]

“Design patterns focus more on reuse of recurring architectural
design themes, while frameworks focus on detailed design…
and implementation.” [Coplien

“A pattern addresses a recurring design problem that arises in
specific design situations and presents a solution to it”
[Buschmann, et. al. (96)]

“Patterns identify and specify abstractions that are above the
level of single classes and instances, or of
[Gamma, et al. (93), also know as GoF (Gang of four)]

In general, a pattern has four essential elements

The pattern name is a handle we can use to describe a design
problem, its solutions, and consequences in a word or two.
Naming a pattern immediately increases our design
vocabulary. It lets us design at a higher level of abstraction.
Having a vocabulary for patterns lets us talk about them with
our colleagues, in our documentation, and even to ourselves. It
makes it easier to think about de

International Journal of Current Advanced Research
6505, Impact Factor: SJIF: 5.995

www.journalijcar.org
2018; Page No. 9924-9927

//dx.doi.org/10.24327/ijcar.2018.9927.1656

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Department of Computer Science, BBAU (Central University)

AN INTRODUCTION ON SOFTWARE DESIGN PATTERNS

BBAU (Central University) Lucknow

describing how to accomplish certain tasks in the realm of
software development. Software design patterns are recognized as a valuable part of good engineering
practices. Capture successful solutions in design patterns, abstract descriptions of interacting software
components that can be customized to solve design problems within a particular context. This paper
discussed about how design pattern is useful for design a software using the concepts of GOF design

ational and behavioral design pattern

Christopher Alexander says, "Each pattern describes a problem
which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a

this solution a million times over,
without ever doing it the same way twice".

“Design patterns constitute a set of rules describing how to
accomplish certain tasks in the realm of software

“Design patterns focus more on reuse of recurring architectural
design themes, while frameworks focus on detailed design…

 et al. (95)].

“A pattern addresses a recurring design problem that arises in
specific design situations and presents a solution to it”

“Patterns identify and specify abstractions that are above the
level of single classes and instances, or of components.”

(93), also know as GoF (Gang of four)]

ern has four essential elements

The pattern name is a handle we can use to describe a design
problem, its solutions, and consequences in a word or two.

immediately increases our design
vocabulary. It lets us design at a higher level of abstraction.
Having a vocabulary for patterns lets us talk about them with
our colleagues, in our documentation, and even to ourselves. It
makes it easier to think about designs and to communicate

Research Article

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

An Introduction on Software Design Patterns

9925

them and their trade-offs to others. Finding good names has
been one of the hardest parts of developing our catalog.

The problem describes when to apply the pattern. It explains
the problem and its context. It might describe specific design
problems such as how to represent algorithms as objects. It
might describe class or object structures that are symptomatic
of an inflexible design. Sometimes the problem will include a
list of conditions that must be met before it makes sense to
apply the pattern.

The solution describes the elements that make up the design,
their relationships, responsibilities, and collaborations. The
solution doesn't describe a particular concrete design or
implementation, because a pattern is like a template that can be
applied in many different situations. Instead, the pattern
provides an abstract description of a design problem and how a
general arrangement of elements (classes and objects in our
case) solves it.

The consequences are the results and trade-offs of applying the
pattern. Though consequences are often unvoiced when we
describe design decisions, they are critical for evaluating
design alternatives and for understanding the costs and benefits
of applying the pattern. The consequences for software often
concern space and time trade-offs. They may address language
and implementation issues as well. Since reuse is often a factor
in object-oriented design, the consequences of a pattern
include its impact on a system's flexibility, extensibility, or
portability. Listing these consequences explicitly helps you
understand and evaluate them.

A design pattern names, abstracts, and identifies the key
aspects of a common design structure that make it useful for
creating a reusable object-oriented design. The design pattern
identifies the participating classes and instances, their roles
and collaborations, and the distribution of responsibilities.
Each design pattern focuses on a particular object-oriented
design problem or issue. It describes when it applies, whether
it can be applied in view of other design constraints, and the
consequences and trade-offs of its use. Since we must
eventually implement our designs, a design pattern also
provides sample C++ and (sometimes) Smalltalk code to
illustrate an implementation. Design patterns are based on
practical solutions that have been implemented in mainstream
object-oriented programming languages like Smalltalk and
C++ rather than procedural languages (Pascal, C, Ada) or more
dynamic object-oriented languages (CLOS, Dylan, Self).We
chose Smalltalk and C++ for pragmatic reasons: Our day-to-
day experience has been in these languages, and they are
increasingly popular.

Describing Design Patterns

How do we describe design patterns? Graphical notations,
while important and useful, aren't sufficient. They simply
capture the end product of the design process as relationships
between classes and objects. To reuse the design, we must also
record the decisions, alternatives, and trade-offs that led to it.
Concrete examples are important too, because they help you
see the design in action. We describe design patterns using a
consistent format. Each pattern is divided into sections
according to the following template. The template lends a
uniform structure to the information, making design patterns
easier to learn, compare, and use.

Pattern Name and Classification: The pattern's name conveys
the essence of the pattern succinctly. A good name is vital,
because it will become part of your design vocabulary.

Intent: A short statement that answers the following questions:
What does the design pattern do? What is its rationale and
intent? What particular design issue or problem does it
address?

Also Known: As Other well-known names for the pattern, if
any.

Motivation: A scenario that illustrates a design problem and
how the class and object structures in the pattern solve the
problem. The scenario will help you understand the more
abstract description of the pattern that follows.

Applicability: What are the situations in which the design
pattern can be applied? What are examples of poor designs that
the pattern can address? How can you recognize these
situations?

Structure: A graphical representation of the classes in the
pattern using a notation based on the Object Modeling
Technique (OMT). We also use interaction diagrams to
illustrate sequences of requests and collaborations between
objects.

Participants: The classes and/or objects participating in the
design pattern and their responsibilities.

Collaborations: How the participants collaborate to carry out
their responsibilities.

Consequences How does the pattern support its objectives?
What are the trades-offs and results of using the pattern? What
aspect of system structure does it let you vary independently?

Implementation: What pitfalls, hints, or techniques should you
be aware of when implementing the pattern? Are there
language-specific issues?

Sample Code: Code fragments that illustrate how you might
implement the pattern inC++ or Smalltalk.

Known Uses : Examples of the pattern found in real systems.
We include at least two examples from different domains.

Related Patterns: What design patterns are closely related to
this one? What are the important differences? With which
other patterns should this one be used?

Gof Design Patterns Classification

The common 23 design patterns which are divided under three
categories and it was given by Gamma, Helm, Johnson and
Vlissides known as Gang of Four (GoF):

Creational Design Pattern

This design patterns is all about class instantiation. This
pattern can be further divided into class-creation patterns and
object-creational patterns. While class-creation patterns use
inheritance effectively in the instantiation process, object-
creation patterns use delegation effectively to get the job done.

Abstract Factory: Provide an interface for creating families of
related or dependent objects without specifying their concrete
classes.

International Journal of Current Advanced Research Vol 7, Issue 2(E), pp 9924-9927, February 2018

 9926

Builder : Separate the construction of a complex object from
its representation so that the same construction process can
create different representations.

Factory Method: Define an interface for creating an object,
but let subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.

Prototype: Specify the kinds of objects to create using a
prototypical instance, and create new objects by copying this
prototype.

Singleton: Ensure a class only has one instance, and provide a
global point of access to it.

Structural Design Pattern

This design patterns is all about Class and Object composition.
Structural class-creation patterns use inheritance to compose
interfaces. Structural object-patterns define ways to compose
objects to obtain new functionality.

Adapter: Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces.

Bridge: Decouple an abstraction from its implementation so
that the two can vary independently.

Composite: Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treating
individual objects and compositions of objects uniformly.

Decorator: Attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to sub
classing for extending functionality.

Façade: Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that makes
the subsystem easier to use.

Flyweight: Use sharing to support large numbers of fine-
grained objects efficiently.

Proxy: Provide a surrogate or placeholder for another object to
control access to it.

Behavioral Design Pattern

This design patterns is all about Class's objects
communication. Behavioral patterns are those patterns that are
most specifically concerned with communication between
objects.

Chain of Responsibility: Avoid coupling the sender of a
request to its receiver by giving more than one object a chance
to handle the request. Chain the receiving objects and pass the
request along the chain until an object handles it.

Command: Encapsulate a request as an object, thereby letting
you parameterize clients with different requests, queue or log
requests, and support undoable operations.

Interpreter: Given a language, define a representation for its
grammar along with an interpreter that uses there presentation
to interpret sentences in the language.

Iterator: Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying
representation.

Mediator: Define an object that encapsulates how a set of
objects interact. Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and it lets you
vary their interaction in dependently.

Memento: Without violating encapsulation, capture and
externalize an object's internal state so that the object can be
restored to this state later.

Observer: Define a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically.

State: Allow an object to alter its behavior when it’s internal
state changes. The object will appear to change its class.

Strategy: Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.

Template Method: Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses. Template
Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure.

Visitor: Represent an operation to be performed on the
elements of an object structure. Visitor lets you define a new
operation without changing the classes of the elements on
which it operates.

Organizations of Classification

Design patterns vary in their granularity and level of
abstraction. Because there are many design patterns, we need a
way to organize them. This section classifies design patterns so
that we can refer to families of related patterns. The
classification helps to learn the patterns in the catalog faster,
and it can direct efforts to find new atternpt as well.

Another classification of design patterns is by two criteria
(Table 1). The first criterion, called purpose, reflects what a
pattern does. Patterns can have creational, structural, or
behavioral purpose.

 Creational patterns concern the process of object
creation.

 Structural patterns deal with the composition of classes
or objects.

 Behavioral patterns characterize the ways in which
classes or objects interact and distribute responsibility.

The second criterion, called scope, specifies whether the
pattern applies primarily to classes or to objects. Class patterns
deal with relationships between classes and their subclasses.
These relationships are established through inheritance, so they
are static-fixed at compile-time. Object patterns deal with
object relationships, which can be changed at run-time and are
more dynamic. Almost all patterns use inheritance to some
extent. So the only patterns labeled “class patterns” are those
that focus on class relationships. Note that most patterns are in
the Object scope.

An Introduction on Software Design Patterns

9927

Benefits of Design Patterns

Design patterns have two major benefits. First, they provide a
way to solve issues related to software development using a
proven solution. The solution facilitates the development of
highly cohesive modules with minimal coupling. They isolate
the variability that may exist in the system requirements,
making the overall system easier to understand and maintain.
Second, design patterns make communication between
designers more efficient. Software professionals can
immediately picture the high-level design in their heads when
they refer the name of the pattern used to solve a particular
issue when discussing system design

CONCLUSION

Design Patterns as such have always been considered as a
useful and promising area that describes Software Reuse of
design experiences. Design patterns have been an important
part of research and study in the field of software engineering.
As in other engineering disciplines there is also an important
role of reusing products of this discipline i.e. reuse of software.
Not only products, reuse of experiences of expert designers is
also very important and useful. Design patterns are one of the
examples of reuse of experiences. They help designers reuse
successful designs by basing new designs on prior experience.
It captures experts’ design decisions, etc. Thus, at the time of
design, designers should look for existing design patterns to
design better software. Apart from this sometimes we have
legacy software that does not have any documentation. In that
situation also if we identify existing, well defined design
patterns, it will be easy to understand the design.

References

1. Jeffrey Heer and Maneesh Agrawala. Software Design
Patterns for Information Visualization, IEEE
Transactions On Visualization And Computer Graphics,
VOL. 12, NO. 5, September/October 2006

2. Shuai Jiang, Huaxin Mu. Design Patterns in Object
Oriented Analysis and Design, Software Engineering and
Service Science (ICSESS), 2011 IEEE 2nd International
Conference on Beijing, China, 2011

3. Bederson, B. B., J. Grosjean, J. Meyer. Toolkit Design
for Interactive Structured Graphics, IEEE Transactions
on Software Engineering, 30(8): 535-546. 2004.

4. P´eter Heged˝us, D´enes B´an, Rudolf Ferenc, and Tibor
Gyim´othy. Myth or Reality? Analyzing the Effect of
Design Patterns on Software Maintainability,
ASEA/DRBC 2012, CCIS 340, pp. 138-145, 2012,
Springer Verlag Berlin Heidelberg (2012).

5. Pankhuri Jain, Sourav Shaw, and Manjari Gupta.
Improving Design of Library Management System using
Design Patterns, International Journal of Advanced
Research in Computer Science, Volume 8, No. 3, 2017

6. Card, S. K., J. D. Mackinlay, B. Schneiderman (eds.).
Readings in Information Visualization: Using Vision to
Think. Morgan- Kaufman, 1999.

7. Chen, H. towards Design Patterns for Dynamic
Analytical Data Visualization, Proceedings of SPIE
Visualization and Data Analysis, 2004.

8. Chi, E. H., J. T. Riedl. An Operator Interaction
Framework for Visualization Systems, IEEE Symposium
on Information Visualization (InfoVis), 1998.

9. Chi, E. H. Expressiveness of the Data Flow and Data
State Models in Visualization Systems, Advanced Visual
Interfaces (AVI), 2002.

10. R.Subburaj Professor, Gladman Jekese, Chiedza Hwata.
Impact of Object Oriented Design Patterns on Software
Development, International Journal of Scientific &
Engineering Research, Volume 6, Issue 2, February-
2015, ISSN 2229-5518

11. Eick, S. G. Visual Discovery and Analysis, IEEE
Transactions on Visualization and Computer Graphics,
6(10). January 2000.

12. Fekete, J.-D. The InfoVis Toolkit, IEEE Symposium on
Information Visualization (InfoVis), 2004.

Table 1 Design pattern space

Purpose

Creational Structural Behavioral

Scope

Class Factory Method Adaptor
Interpreter

Template Method

Object

Abstract Factory

Builder
Prototype
Singleton

Adapter
Bridge

Composite
Decorator

Facade
Proxy

Chain of
Responsibility
Command

Iterator
Mediator
Memento
Flyweight
Observer

State
Strategy
Visitor

How to cite this article:

Deepa Raj (2018) 'An Introduction on Software Design Patterns', International Journal of Current Advanced Research, 07(2),
pp. 9924-9927. DOI: http://dx.doi.org/10.24327/ijcar.2018.9927.1656
