International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: SJIF: 5.995 Available Online at www.journalijcar.org Volume 6; Issue 11; November 2017; Page No. 7649-7656 DOI: http://dx.doi.org/10.24327/ijcar.2017.7656.1199

ANTIMICROBIAL, SPECTROSCOPIC, NBO AND NLO ANALYSIS OF (2E)-3-(2H-1,3-BENZODIOXOL-5-YL)-N-(4-CHLOROPHENYL) PROP-2-ENAMIDE

Abbas Manthiri S¹., Raj Muhamed R^{1*}., Sathyanarayanamoorthi V²., Raja M^{1,3} and Arulappan S¹

¹Department of Physics, Jamal Mohamed College, Tiruchirappalli 620020, Tamil Nadu, India ²Department of Physics, PSG College of Arts and Science, Coimbatore 641014, Tamil Nadu, India ³Department of Physics, Govt Thirumagal Mills College, Gudiyattam 632602, Vellore, Tamil Nadu, India

ARTICLE INFO ABSTRACT Article History: The title compound, (2E)-3-(2H-1,3-benzodioxol-5-yl)-N-(4-chlorophenyl)prop-2-enamide (3B5NCE) was synthesized and characterized by FT-IR and FT-Raman spectral analysis. Received 6th August, 2017 The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities Received in revised form 25th and the Raman scattering activities were calculated by using density functional September, 2017 Accepted 3rd October, 2017 theory(DFT) B3LYP method with 6-311++G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. Stability of the molecule Published online 28th November, 2017 arising from hyperconjugative interactions, charge delocalization have been analyzed using Key words: natural bond orbital analysis (NBO). The first order hyperpolarizability was also performed. The title compound was screened in vitro for antimicrobial activity against three DFT; NLO; NBO; FTIR, FT-Raman bacterial and two fungal strains.

Copyright©2017 Abbas Manthiri S et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The synthesis of enamide derivatives has generated vast interest to organics as well as for medicinal chemistry, agricultural and many other industrial processes [1]. Enamides or enecarbamates are well-known versatile motifs in organic synthesis [2,3]. The π -donating ability of their nitrogen atom renders enamines more electron-rich [4] than simple enols or enol ethers, thereby predisposing them to electrophilic activation. However, enamines are highly sensitive toward hydrolysis, thereby creating serious difficulties in their experimental handling [5,6]. Enamides and enecarbamates that carry an electron-withdrawing group on the nitrogen were found to be ideal candidates. Indeed, enamides are commonly present in natural products and active drugs [7,8] demonstrating their high stability. Several enamide derivatives have proved the efficiency and efficacy in combating various diseases. Particularly, enamide derivatives of (2E)-3-(2H-1,3benzodioxol-5-yl)-N-(4-chlorophenyl)prop-2-enamide

(3B5NCE) wide variety of biological activities such as antifungal, antibacterial, antituberculosis, antitumor, hypoglycemic, anti-inflammatory, analgesic and antipyretic activities [1].

Therefore it is important to analyze the characterization of the title compound for future studies.

Corresponding author:* **Raj Muhamed R Department of Physics, Jamal Mohamed College, Tiruchirappalli 620020, Tamil Nadu, India Considering these biological importance of (2E)-3-(2H-1,3benzodioxol-5-yl)-N-(4-chlorophenyl)prop-2-enamide, this work is mainly focused to the detailed structural behavior of the molecule. FT-IR and FT-Raman spectra of 3B5NCE have been reported together with the assignments of the vibrational modes supported by PED. The linear polarizability (α) and the first order hyperpolarizability (β) values investigated molecule have been computed using DFT calculations. In addition, 3B5NCE has been screened for antimicrobial activity against bacteria such as Staphylococcus Auresus, Moraxella and Enterobacter as well as fungi such as Candida albicans and A.niger at four different concentrations 25, 50, 75 and 100 µm/ml. Docking analysis has been performed to find out the binding affinity and drug activity of the molecule.

Synthesis

A mixture of equimolar (0.01) concentrations of 1.35 g of finely powdered N-phenylacetamide and 1.5 g 2H-1,3benzodioxole-4-carbaldehyde were dissolve in minimum amount of ethanol (30ml) taken in a round bottom flask. Sufficient 2N NaOH solution was added to the above solution and continuous stirring for 4 hrs in ice cold condition till yellow precipitate was formed. This was then neutralized with 2N HCl and dilutes with water and left overnight. The precipitate chalcones were filtered and washed with water and recrystallised from ethanol. The reaction scheme is shown in Fig.1.

Experimental

The FT-IR spectrum of the synthesis compound (2E)-3-(1Hindol-2-yl)-N-phenylprop-2-enamide (2INP) was recorded in the region 4000-450 cm⁻¹ in evacuation mode using a KBr pellet technique with 1.0 cm⁻¹ resolution on a PERKIN ELMER FT-IR spectrophotometer. The FT-Raman spectrum of the 3B5NCE compound was recorded in the region 4000-100 cm⁻¹ in a pure mode using Nd: YAG Laser of 100 mW with 2 cm⁻¹ resolution on a BRUCKER RFS 27 at SAIF, IIT, Chennai, India.

Computational details

The entire calculations (vibrational wavenumbers, geometric parameters, and other molecular properties) were implemented by using GaussView 5.0 program [9] and Gaussian 09W

program package on a computing system [10]. The molecular structure of 2INP the ground state (in the gas phase) was optimized by DFT/B3LYP methods with 6-311++G(d,p) basis set level, and the optimized structure was used in the vibrational frequency calculations. The calculated harmonic vibrational frequencies were scaled by 0.961 [11]. Molecular docking (ligand-protein) simulations have been performed by using autoDock 4.2.6 free software package.

RESULTS AND DISCUSSION

Molecular geometry

The geometrical parameters (bond length and bond angles) of the synthesis 3B5NCE compound are listed in Table 1 using DFT/B3LYP method with 6-311++G(d,p) basis set.

Table 1 Optimized geometrical parameters of (2E)-3-(2H-1,3-benzodioxol-5-yl)-N-(4-chlorophenyl)prop-2-enami	ide
(3B5NCE) obtain by B3LYP/6-311++G(d,p) basis set.	

Parameters	Experimental ^a	B3LYP/	Parameters	Experimental ^a	B3LYP/
Bond ler	ngth(Å)	6-311++G(a,p)	Bond angle(⁰)	1	6-311++G(d,p)
C1-C2	1 493	1 486	C19-C3-H23	114.0	113.9
C1-04	1.475	1 223	C3-C19-C18	117.7	117.8
C1-N5	1 363	1 382	C3-C19-C20	122.4	122.8
C2-C3	1 349	1 344	C6-N5-H24	116.0	115.0
C2-H22	0.960	1.084	N5-C6-C7	116.3	117.4
C3-C19	1 4 50	1 465	N5-C6-C11	124.7	123.6
C3-H23	0.960	1.089	C7-C6-C11	119.0	119.0
N5-C6	1 422	1 408	C6-C7-C8	120.5	121.0
N5-H24	0.860	1.008	С6-С7-Н25	120.0	119.9
C6-C7	1 407	1 403	C6-C11-C10	119.9	119.8
C6-C11	1 407	1.402	C6-C11-H28	120.0	119.0
C7-C8	1 390	1 389	C8-C7-H25	119.0	119.1
C7-H25	0.960	1.086	C7-C8-C9	119.0	119.2
C8-C9	1 390	1 391	C7-C8-H26	120.0	120.4
C8-H26	0.960	1.082	C9-C8-H26	120.0	120.1
C9-C10	1 390	1 390	C8-C9-C10	120.0	120.4
C9-C112	1 493	1.550	C8-C9-C112	119.4	119.6
C10-C11	1 390	1 393	C10-C9-C112	119.4	119.8
C10-H27	0.960	1.083	C9-C10-C11	120.6	120.3
C11 H28	0.960	1.070	C9 C10 H27	120.0	120.5
013-C14	1 296	1.079	С9-С10-1127	120.0	119.7
013 C17	1.296	1.450	C10 C11 H28	120.0	120.4
C14 O15	1.290	1.370	C14 O13 C17	120.0	105.2
C14-015	0.960	1.455	013 C14 015	-	107.2
C14-1129 C14 H20	0.900	1.089	013-014-013	-	107.2
015 016	1.216	1.097	013-C14-H20	-	109.4
C16 C17	1.210	1.374	013 - C14 - 1130 013 - C17 - C16	-	109.2
C16 C18	1.395	1.375	013 - C17 - C10 013 - C17 - C21	121.2	109.7
C17 C21	1.375	1.375	015-017-021	121.2	128.7
C17-C21 C18 C10	1.385	1.381	015-C14-H20	-	109.5
C18 H31	0.960	1.410	C14 O15 C16	-	109.4
C19 C20	1.407	1.085	H20 C14 H30	110.0	111.0
C19-C20	1.407	1.404	015 C16 C17	110.0	100.5
C20-C21	0.960	1.082	015-016-017	121.2	109.5
C20-1132	0.900	1.082	C17 C16 C18	121.2	128.5
C21-1155	0.900	1.082	C16 C17 C21	121.9	122.0
	121.2	120.6	C16 C18 C10	121.9	121.9
C2-C1-04	121.2	120.0	C16 C18 H21	118.2	117.9
C_2 - C_1 - N_3	125.7	115.9	C17 C21 C20	120.0	120.9
C1 - C2 - C3	123.7	120.2	C17-C21-C20	117.7	117.1
04 C1 N5	114.0	112.1	C17-C21-H35	120.0	121.5
C1 N5 C6	124.0	123.3	C19-C10-H31	120.0	121.2
C1 N5 H24	120.4	120.9	C10 - C19 - C20	117.7	119.5
$C_1 - N_3 - \Pi_2 4$ $C_2 - C_2 - U_2 2$	110.5	113.0	C19 - C20 - C21	121.9	122.1
$C_2 C_2 C_{10}$	120.0	121.3	C19-C20-H32	120.0	119.0
$C_2 - C_3 - C_{19}$	125.7	127.0	C21-C20-H32	119.0	118.5
C2-C3-H23	119.0	118.5	C20-C21-H33	120.0	121.6

^a Taken from Ref [16]

Fig 1 The scheme of the synthesis of 3B5NCE

The optimized molecular structure of title compound is obtained from Gaussian 09W and GaussView 5.0 programs are shown in Fig. 2. To the best of our knowledge, exact experimental data on the geometrical parameters of 3B5NCE are not available in the literature. Therefore, the crystal data of a closely related molecule such as (E)-2-Cyano-3-[4-(dimethylamino)-phenyl]-N-phenylprop-2-enamide [12] compared with that of the title compound.

Fig 2 Optimized geometric structure with atoms numbering of 3B5NCE

The theoretical calculations were carried out isolated molecule in the gaseous phase the experimental results are for a molecule in a solid state. This title molecule has sixteen C-C bond lengths, eleven C-H bond lengths, three O-C, two (C-O, N-C) bond lengths and one (N-H) bond lengths respectively. The highest bond length was calculated for $C_9 - C_{12}$, $C_1 - C_2$ found to be 1.760 and 1.486 Å. The calculated bond length values for C-C and C-H in the benzene ring vary from 1.486-1.344 Å and 1.097-1.079 Å by B3LYP/6-311G(d,p) basis set. The C-C bond lengths are higher than the C-H bond lengths. The important reasons for the same charges are repulsive and opposite charges are attractive.

Vibrational analysis

Vibrational spectroscopy is used extensively in organic chemistry for the identification of functional groups of organic compounds, the study of molecular confirmations, kinetics, reaction etc.

311 + + G(d,p)

The complete vibrational assignments of fundamental modes of 3B5NCE along with the PED are given in Table 2. The title molecule consists of 33 atoms, which has 93 normal modes of vibration. Potential energy distribution (PED) was computed for each normal mode among the symmetry coordinates of the molecule. Based on the computed PED values and FT-IR intensities and FT-Raman band activities a detailed assignment fundamentals was proposed. The calculated of the wavenumbers are scaled using the scaling factor 0.961. The comparative observed and simulated FT-IR and FT-Raman spectra are shown in Fig. 3 and 4. The calculated vibrational frequencies (Unscaled and Scaled), IR intensity, Raman activity are tabulated in Table 2.

C-H vibrations

In the aromatic compounds, the C-H stretching wavenumbers appear in the range 3000-3100 cm⁻¹ which are the characteristic region for the ready identification of C-H stretching vibrations [13]. The C-H stretching and bending regions are of the most difficult regions to interpret in infrared spectra. The nature and position of the substituent cannot affect these vibrations. Most of the aromatic compounds have almost four infrared peaks in the region 3080-3010 cm⁻¹ due to ring C-H stretching bands [14]. In this present study, the C-H stretching vibrations are observed at 3117, 3076, 3069, 3067, 3059, 3032 and 3002 cm⁻¹ by B3LYP/6-311++G(d,P) method show good agreements with experimental vibrations. The bands observed in the recorded FT-IR spectrum 3127(s), 3074(m), 2998(m) cm⁻¹ and with the FT-Raman spectrum bands at 3118(s), 3069(vs), 3060(vs), 3045(s), 3031(s) cm⁻¹. The PED corresponding to this pure mode of title molecule contributed 98, 96, 90, 96, 88, 97 and 99% is shown in Table 2.

C-C ring vibrations

The C-C stretching vibrations are expected in the range from 1650 to 1100 cm⁻¹ which are not significantly influenced by the nature of the substituents [15]. The C-C stretching vibrations of the 3B5NCE compound were observed from 1625 to 910 cm⁻¹. In this present study, the C-C stretching vibrations are found at 1606(vs), 1537(vs), 1489(vs), 1449(vs), 1393(vs), 1370(s), 1314(vs), 1260(vs), 1090(s), 928(s) cm⁻¹ in FT-IR and 1622(s), 1592(vs), 1540(s), 1493(s), 1448(s), 1393(m), 1360(s), 1257(s), 1237(s), 1180(s), 1119(s) cm⁻¹ in FT-Raman respectively.

Table 2 Calculated vibrational frequencies (cm⁻¹) assignments of 3B5NCE based on B3LYP/6-311++G(d,p) basis set.

Mode	Expe	rimental	Theor	etical			
nouc	wave nu	mber (cm ⁻¹)	wave nun	ıber(cm ⁻¹)	I_ c	I _{RAMAN} ^d	Assignments (PED) ^{a,b}
110 -	FTIR	FT-RAMAN	Unscaled	scaled	IR		
93	-	-	3624	3483	3	5	vNH(100)
92	3127(s)	3118(s)	3243	3117	2	3	vCH(98)
91	5127(3)	5110(3)	3207	3082	1	7	$\gamma CH(90)$
91	2074()	-	3207	2076	1	5	$\operatorname{VCH}(92)$
90	30/4(m)	-	3201	3076	0	5	γCH(96)
89	-	-	3197	3072	0	4	γCH(98)
88	-	3069(vs)	3193	3069	0	1	γCH(90)
87	-	3060(vs)	3191	3067	0	2	γCH(96)
86	-	3045(s)	3183	3059	2	2	γCH(-88)
85	-	3031(s)	3155	3032	3	2	vCH(97)
84	_	-	3125	3003	6	9	$\gamma CH(93)$
83	2998(m)	_	3124	3002	4	2	$\gamma CH(99)$
82	2))0(III)	-	2012	2804	27	14	$\gamma CH(02)$
02	1(01()	-	1724	2094	21	70	γCΠ(93)
81	1681(VS)	1663(VS)	1/24	1656	68	/9	$\gamma OC(72)$
80	1606(vs)	1622(s)	1679	1614	6	21	γCC(59)
79	-	1592(vs)	1645	1581	12	100	γCC(64)
78	-	-	1639	1575	2	8	γCC(60)
77	-	-	1635	1571	4	54	$\gamma CC(-52)+\beta HCC(-17)$
76	1537(vs)	1540(s)	1624	1561	15	3	$\gamma CC(58) + \beta HNC(-14) + \beta HCC(12)$
75	1489(vs)	1493(s)	1542	1482	100	22	$\gamma CC(-11)+\beta HNC(-43)$
74	1105(10)	11)5(5)	1540	1480	22	5	BHCH(70)
72	-	-	1570	1/62	22	2	риси(79) внос(41)
15	-	-	1522	1403	20	2	$p_{\Pi}(C(41))$
12	1449(vs)	1448(s)	1520	1460	69	2	$\beta HCC(-42) + \gamma CC(13)$
71	1393(vs)	1393(m)	1470	1412	8	2	β HCC(27)+ γ CC(29)
70	-	1372(s)	1427	1372	0	2	τHCOC(77)
69	1370	1360(s)	1424	1368	20	3	βHCC(-32)+γCC(-45)
68	1314(vs)	-	1389	1335	30	29	$\gamma CC(-54)+\beta HCC(-12)$
67	1291(vs)	1293(vs)	1345	1292	3	4	β HCC(57)+ γ CC(-10)
66	_	-	1332	1280	34	17	$\gamma CC(-42)+\beta HCC(24)$
65	$1260(y_{\rm S})$	_	1321	1270	2	2	$\gamma CC(28) + \beta HCC(49)$
64	1200(v3)	1257(a)	1205	1270	10	20	PUCC(25) + PUCC(12)
04	-	1237(8)	1303	1234	10	20	$\frac{1}{2}$
63	-	123/(s)	1294	1244	32	14	β HCC(-42)+ γ CC(-11)
62	-	-	1275	1225	16	5	$\gamma CC(30)+\beta HCC(15)$
61	-	-	1261	1212	9	22	γCC(58)
60	-	1180(s)	1236	1187	93	14	$\gamma CC(-46)+\beta HCC(11)$
59	1170(m)	1171(s)	1219	1172	9	7	βHCC(59)
58	-	-	1201	1155	0	2	BHCC(59)
57	_	-	1200	1153	9	19	BHCC(-33)
56	_	1119(s)	1163	1118	Á	0	BHCC(38)+*CC(39)
55	-	$1001(w_{2})$	1142	1007	т 2	0	
55	-	1091(vs)	1142	1097	2	0	phCO(90)
54	1090(s)	-	1138	1094	3	0	$\beta HCC(-58)+\gamma CC(27)$
53	-	-	1110	1067	/	11	β HCC(-11)+ γ CC(21)
52	-	-	1103	1060	17	1	$\gamma ClC(-11)+\beta HCC(-13)+\gamma CC(-56)$
51	1038(vs)	1010(vs)	1057	1016	31	0	γOC(76)
50	-	-	1025	985	5	1	β HCC(69)+ γ CC(-18)
49	968(m)	968(m)	1001	962	9	5	τHCCO(-76)
48	-	-	988	950	1	1	$\gamma CC(52)$
47	_	-	987	948	0	0	τ HNCC(-77)
46	028(a)		0/8	011	ů 0	1	$\alpha CC(57)$
40	920(3)	-	044	911	0	1	$\gamma CC(-57)$
43	-	-	944	907	9	1	YOC(09)+(HCCN(-89)
44	-	-	944	907	0	0	tHCCC(-84)
43	-	-	941	905	I	0	τHCCO(69)
42	-	-	895	860	2	3	β HNC(21)+ τ HCCO(-14)+ γ CC(28)
41	-	845(s)	873	839	1	2	τHCCO(62)
40	829(s)	821(s)	861	828	6	0	τHCCC(87)
39	-	-	852	819	7	0	β HCC(13)+ γ CC(56)
38	-	-	830	798	3	1	τ HCCC(81)
37	_	_	823	791	6	0	THCCN(-89)
36	784(m)	785(a)	816	791	5	0	BHCC(42) + *CC(15)
25	751(-)	105(8)	010	704	2	0	ρποο(42)+γου(13) ρποο(17)
33	/51(S)	-	800	//4	2	0	
34	-	/19(s)	/50	/21	3	0	рнсс(55)
33	707(m)	709(vs)	731	702	2	1	τ HCCC(58)
32	-	-	730	702	1	0	τHNCC(-80)
31	-	-	720	692	0	0	τHCCC(56)
30	-	-	708	680	0	0	βHCC(19)
29	625(m)	632(s)	658	632	1	1	βHCC(-79)
28	607(m)	-	647	622	1	0	$\tau HCCC(-10)+BCCO(-50)$
20	507(m)	=	612	580	0	0	τHCCC(56)
21	-	-	013	507	1	0	
20	-	-	000	511	1	0	
25	-	-	228	536	4	0	THNCC(-58)
24	506(m)	-	542	521	9	0	τHNCC(78)

23	-	-	518	498	4	0	γClC(-14)+βHCC(-43)
22	-	-	495	476	2	1	τHCCC(48)+βHCC(19)
21	-	-	431	414	1	0	τ HCCC(25)+ β HCC(-30)
20	-	-	426	410	1	0	τHCCC(97)
19	-	-	421	405	0	0	βHNC(55)
18	-	381(s)	394	379	2	0	τHCCC(-71)
17	-	355(s)	363	349	1	0	τ HNCC(-26)+ β HCC(12)
16	-	-	348	335	3	0	τ HNCC(54)
15	-	-	332	319	1	0	βCCC(46)
14	-	301(s)	299	288	1	0	β CNC(-49)+ τ HCCN(-14)+ β HCC(-10)
13	-	-	269	259	0	0	τ HCCN(63)
12	-	-	251	241	0	0	τHCCN(-66)
11	-	173(s)	202	194	0	0	$\tau CNCC(43)$
10	-	-	165	159	0	0	β HNC(43)+ τ HCCO(-16)
9	-	-	142	136	2	0	βHCC(-14)
8	-	-	135	129	0	0	β HNC(11)+ τ CNCC(-27)
7	-	-	126	122	2	0	τHCOC(-79)
6	-	-	107	103	1	0	τHCCO(39)
5	-	-	68	65	0	0	τ HCCO(-48)+ β HCC(12)
4	-	-	47	45	0	0	τ HCCC(-48)+ τ HNCC(10)
3	-	-	31	30	0	0	τ HCCO(10)+ τ HNCC(20)+ β HCC(25)
2	-	-	22	21	0	0	τHNCC(-47)
1	-	-	15	14	0	0	$\tau CCCC(57)$

^aγ-stretching, β- inplane bending ,ω- outplane bending, τ-torsion, vs-very strong, s- strong, m-medium, w-weak.

^bscaling factor : 0.961 for B3LYP/6-311+G(d,p)

^eRelative absorption intensities normalized with highest peak absorption equal to 100.

^dRelative Raman intensities normalized to 100.

The theoretical wavenumbers at 1614, 1581, 1561, 1482, 1460, 1412, 1368, 1335, 1270, 1254, 1244, 1187, 1118, 1094 and 911 cm⁻¹ are assigned as C-C stretching vibrations with PED contribution of 59, 64, 58, 22, 23, 29, 45, 54, 28, 23, 25, 46, 39, 27 and 57% respectively.

C-O vibration

The C-O stretching vibration occurs at 1627 (vs) cm⁻¹ in FT-IR and 1626 cm⁻¹ in solid FT-Raman [16]. Normally, the C–O stretching vibrations occur in the region 1260-1000 cm⁻¹ [17]. The C-C stretching vibrations of the 3B5NCE compound were observed from 1660 to 1010 cm⁻¹. In this present study, the C-C stretching vibrations are found at 1681(vs), 1038(vs) cm⁻¹ in FT-IR and 1663(vs), 1010(vs) cm⁻¹ in FT-Raman. The theoretical wavenumbers at 1656, 1016 cm⁻¹ are assigned as C-C stretching vibrations with PED contributions of 72, 76%.

Hyperpolarizability calculation

NLO is at the future of current research because it provides the key functions of frequency shifting, optical modulation, optical switching, optical logic, and optical memory for the emerging technologies in areas such as telecommunications, signal processing, and optical interconnections [18,19].

In discussing NLO properties, the polarization of the molecule by an external radiation field is often approximated as the creation of an induced dipole moment by an external electric field. The first hyperpolarizability (β_0) of this molecular system is calculated using B3LYP/6-311++G (d,p) method, based on the finite field approach.

Urea is the prototypical molecule utilized in investigating of the NLO properties of the compound. For this reason, urea was used often as a threshold value for comparative purpose. The calculated dipole moment and hyperpolarizability values obtained from B3LYP/6-311++G(d,p) methods are collected in Table 3. The first order hyperpolarizability of 3B5NCE with B3LYP/6-311++G(d,p) basis set is 16.4610 x 10⁻³⁰ twenty six times greater than the value of urea ($\beta o = 0.6230 \times 10^{-30}$ esu).

Table 3 The values of calculated dipole moment μ (D),polarizability (α_0), first order hyperpolarizability (β tot)components of 3B5NCE

Parameters	B3LYP/6- 311++G(d,p)	Parameters	B3LYP/6- 311++G(d,p)
μ _x	-2.1850	β_{xxx}	1652.1517
μ_{y}	-1.1096	β_{xxy}	1089.3198
μ_z	-0.2932	β_{xyy}	-136.6774
μ(D)	2.4681	β _{yyy}	84.7987
α_{xx}	417.1405	β _{zxx}	166.0636
α_{xy}	7.6179	β_{xyz}	-19.8863
α_{yy}	208.9670	β _{zyy}	-5.6903
α _{xz}	4.6006	β_{xzz}	-25.7611
α_{yz}	3.8657	β_{yzz}	-2.4566
α _{zz}	124.3771	β _{zzz}	35.5808
α_0 (e.s.u)	3.7074×10^{-23}	βtot (e.s.u)	16.4610X10 ⁻³⁰
$\Delta \alpha$ (e.s.u)	11.3850 x10 ⁻²⁵	/	

From the computation, the high values of the hyperpolarizabilities of 3B5NCE are probably attributed to the charge transfer existing amid the benzene rings within the molecular skeleton. This is evidence for the nonlinear optical (NLO) property of the molecule.

Donor- acceptor interactions

The second order fock matrix was carried out to investigate the donor-acceptor interactions in the NBO analysis [20]. NBO analysis has been carried out on the (2E)-3-(2H-1,3-benzodioxol-5-yl)-N-(4-chlorophenyl)prop-2-enamide at the B3LYP/6-311++G(d,p) level in order to elucidate the intra molecular, rehybridization and delocalization of electron density within the molecule. The higher the E(2) value, the molecular interaction between electron donors and electron acceptors is more intensive and the greater the extent of conjugation of the entire system. Delocalization of electron density amid occupied Lewis-type (bond or lone pair) NBO orbitals and properly unoccupied (antibond or Rydgberg) non-Lewis NBO orbitals resemble to a stabilizing donor-acceptor interaction.

Donor(i)	Туре	ED/e	Acceptor(i)	Туре	ED/e	$^{a}E(2) (KJ mol^{-1})$	^b E(J)-E(i) (a.u.)	^c F(I,j)(a.u.)
C1-C2	σ	1.97224	C1-O4	σ*	0.021	4.050	1.380	0.067
			C1-N5	σ*	0.067	4.550	1.350	0.071
			C2-C3	σ^*	0.021	4.850	1.370	0.073
C1-O4	σ	1.98732	C1-C2	σ*	0.041	4.280	1.660	0.076
C1-O4	π	1.95749	C2-C3	π*	0.169	7.910	0.410	0.052
			C11-H28	σ*	0.060	3.930	0.480	0.039
			O15-C16	σ*	0.025	2.360	0.610	0.034
			C16-C18	π^*	0.395	3.950	0.200	0.028
C1-N5	σ	1.98004	C9-C10	σ*	0.035	12.660	2.550	0.161
C2-C3	π	1 82051	C1-04	π*	0.413	29 530	0.300	0.090
C3-H23	 σ	1 96754	C2-H22	۳ ۳	0.020	5 030	1 010	0.064
N5-H24	σ	1 97771	C1-04	<u>م</u> *	0.020	5 190	1 310	0.074
110 112 1	0	1.97771	C20-C21	۰ ۳	0.015	9 260	1 390	0.101
			C21-H33	۰ «*	0.018	7.030	1.020	0.076
C6-C7	G	1 96274	C6-C11	۰ «*	0.034	10 390	1.780	0.122
0007	0	1.90274	C7-C8	۰ «*	0.020	6 890	1.760	0.099
			C9-C10	σ*	0.020	8.620	1.740	0.110
C6 C7	-	1 64127	C8 C0	-*	0.035	28 620	0.200	0.094
0-07	л	1.04127	C10 C11	π*	0.417	10 010	0.300	0.004
C6 C11	~	1 05226	N5 C6	π. σ*	0.309	5 400	1 340	0.074
0-011	σ	1.93230	INJ-UO	0" -*	0.035	5.400	1.340	0.076
			N3-H24	σ~ _*	0.041	5.390	1.010	0.000
07.00		1.0(207	C6-C7	σ.	0.030	8.540	1.370	0.097
07-08	σ	1.96397	08-09	σ*	0.033	6.4/0	1.370	0.084
C/-H25	σ	1.9/561	C11-H28	σ*	0.060	54.820	0.690	0.175
			015-C16	σ*	0.025	32.630	0.820	0.146
			C16-C18	π^*	0.395	32.070	0.410	0.113
C8-C9	π	1.68466	C6-C7	π*	0.432	18.840	0.300	0.070
			C10-C11	π^*	0.309	21.010	0.340	0.075
C10-C11	π	1.64955	C6-C7	π^*	0.432	27.220	0.270	0.079
			C8-C9	π^*	0.419	23.570	0.270	0.073
O13-C14	σ	1.98671	C20-C21	σ^*	0.015	12.780	1.670	0.130
			C21-H33	σ*	0.018	12.550	1.300	0.114
C14-H29	σ	1.99096	C9-C10	σ*	0.035	10.890	2.070	0.135
C14-H30	σ	1.99127	C20-C21	σ*	0.015	14.360	1.280	0.121
			C21-H33	σ^*	0.018	8.900	0.920	0.081
C16-C17	σ	1.96337	O15-C16	σ*	0.025	20.940	1.050	0.133
			C17-C21	σ*	0.030	14.330	1.360	0.125
C16-C18	π	1.68488	C20-C21	σ*	0.015	8.750	1.020	0.091
			C21-H33	σ*	0.018	6.790	0.650	0.064
C18-H31	σ	1.97589	C18-C19	σ*	0.029	11.870	0.770	0.085
	-		C20-C21	σ*	0.015	13.010	1.250	0.114
C21-H33	σ	1.9754	C9-C10	σ*	0.035	17 310	0.870	0.110
04	LP(1)	1.95265	C1-N5	σ*	0.067	4,590	1.240	0.068
. · ·	(1)	1.90200	C11-H28	 σ*	0.060	22.920	0.730	0.116
04	IP(2)	1 88183	C1-C2	~ ~*	0.041	14 750	0.900	0.105
04	L1 (2)	1.00105	C1-N5	σ*	0.041	16.070	0.900	0.100
			C11 H28	۰ ج*	0.007	/3 120	0.210	0.109
N5	I P(1)	1 61550	C1 04	υ· π*	0.000	+5.120 86.120	0.400	0.119
113	$\Gamma_{L}(1)$	1.01337	$C_1 - C_2$	n · ~*	0.415	0.120	0.300	0.144
			C_2 - C_3	n	0.109	0.030	0.510	0.015
CHI	I D(1)	1.00100	C0-C7	π~ _*	0.432	54.010	0.510	0.140
CI12	LP(1)	1.99199	C20-C21	σ* _*	0.015	16./20	1.030	0.148
CI12		1.07220	C21-H33	σ*	0.018	8./10	1.270	0.094
CI12	LP(2)	1.97339	C8-C9	σ*	0.033	4.370	0.950	0.058
			C9-C10	σ*	0.035	4.460	0.940	0.058
CI12	LP(3)	1.93307	C8-C9	π^*	0.419	13.020	0.340	0.066
013	LP(1)	1.94583	C11-H28	σ*	0.060	11.550	0.690	0.080
			O15-C16	σ*	0.025	8.200	0.830	0.074
O13	LP(2)	1.80261	C14-H29	σ^*	0.033	5.400	0.690	0.057
			C17-C21	π*	0.417	46.200	0.340	0.119
O15	LP(2)	1.81525	C16-C18	π^*	0.395	91.190	0.190	0.125

Гяh	le 4	Second	order	nerturbation	theory	analysis	of Fock	matrix in	NRO	hasis fo	vr 3 B 5	NCF
1 ผม	16 4	Second	order	perturbation	theory	anarysis	OI FOCK	maurix m	INDU	Dasis IC	лэдэ	INCE

The strong intramolecular hyper conjugative interaction of the σ and π electrons of C-C to the anti C - C bond of the ring leads to stabilization and evidence of some part of ring values are listed in Table 4. The strong intramolecular hyperconjugative interaction of σ (C₆-C₇) distributes to σ^* (C₆ - C₁₁, C₇ - C₈ and C₉ - C₁₀ of the ring. On the other hand, side the π C₆- C₇ in the ring conjugate to the anti-bonding orbital of $\pi^*(C_8 - C_9)$ and $\pi^*(C_{10} - C_{11})$ which leads to strong delocalization of 28.620 and 19.91 kJ/mol respectively. Some important second order perturbation energies and molecular orbital interactions investigated from the NBO calculation are

between Lewis and non-Lewis orbital with Oxygen and nitrogen lone pairs. The very significant interaction between them was the electron donation of LP(2) O₄, LP(1) N₅, LP(1) Cl₁₂, LP (2) O₁₃ and O₁₅ to the neighbouring antibonding acceptor $\sigma^*(C_1-C_2)$, $\sigma^*(C_1-N_5)$, $\sigma^*(C_{11}-H_{28})$, $\pi^*(C_1-O_4)$, $\pi^*(C_{20}-C_{21})$, $\sigma^*(N_1-C_3)$, $\pi^*(C_{17}-C_{21})$ and $\pi^*(C_{16}-C_{18})$ of the 3B5NCE energy by 14.75, 16.07, 43.12, 86.12, 16.71, 46.20 and 91.19 kJ/mol.

S

Candida albicans

Aspergillus niger

Fig 5 Antibacterial activity and antifungal activity of title molecule

Antimicrobial activity

The title compound was screened for its antimicrobial activity against bacterial and fungal strains by Kirby–Bauer agar well diffusion method [21]. The activity was determined by measuring the inhibition zone diameter values (mm) of the investigated compound and antimicrobial activity of 3B5NCE against bacterial and fungal pathogens are shown in Fig. 5. The antimicrobial and solvent sensitivity tests for both bacterial and fungal strains were observed and listed in Table 5 respectively.

Table 5 Antimicrobial activity of 3B5NCE

			Zone of inhibition (mm/µL)						
S. No.		Organisms	25 μL	50 μL	75 μL	100 μL	Control		
1	Destarial	Staphylococcus Auresus	16	20	25	32	25		
2	Strain	Moraxella	14	18	24	29	30		
3	Strain	Enterobacter	17	21	23	26	17		
4	Fungi	Candida albicans	15	19	21	25	24		
5	Strain	A.niger	13	17	21	24	12		

It is noted that the DMSO solvent, it has no activity on the microbes. 3B5NCE dissolved at four concentrations (25, 50, 75 and 100 μ l) were screened for their antibacterial activity against three bacterial strains such as, *Staphylococcus Auresus, Moraxella and Enterobacter* and two fungal strains such as, *Candida albicans* and *A.niger* which were selected for the present investigation by the agar well diffusion method. From Tables 5 shows a good activity of 3B5NCE against the three bacterial strains Staphylococcus Auresus, Moraxella and Enterobacter and the two fungal strains and *A.niger*.

CONCLUSION

In the present work, we have thoroughly analyzed spectroscopic (FT-IR, FT-Raman), NLO and NBO analysis of 3B5NCE molecule with B3LYP/6-311++G(d,p) methods. The structural parameters, vibrational frequencies, infrared intensities and Raman activities calculated by B3LYP/6-311++G(d,p) method agree very well with experimental results. The complete vibrational assignments of wave numbers are made on the basis of potential energy distribution (PED). The nonlinear optical properties are also addressed theoretically. The first order hyperpolarizability of the title compound is twenty six times greater than the value of urea. Furthermore, antimicrobial studies of the title molecule show that a molecule is an attractive object for the future studies of biological activity.

Reference

- O.A. Luzina, D.N. Sokolov, M.A. Pokrovskii, A.G. Pokrovskii, O. B. Bekker, V.N. Danilenko N.F. Salakhutdinov, synthesis and biological activity of usnic acid Enamine derivatives, Chemistry of Natural Compounds, 51 (2015) 646-651.
- R. Matsubara, S. Kobayashi, Enamides and Enecarbamates as Nucleophiles in Stereoselective C–C and C-N Bond-Forming Reactions, *Acc. Chem. Res*, 41 (2008) 292-301.
- 3. D.R. Carbery, Enamides: valuable organic substrates, *Org. Biomol. Chem.* 6 (2008) 3455-3460.
- 4. H. Mayr, Structure-Nucleophilicity Relationships for Enamines, *Chem. Eur. J.* 9 (2003) 2209-2218.
- O. Èervinka. In The Chemistry of Enamines, Part 1; Rappoport, Z., Ed.; John Wiley & Sons: New York, 1994, Chap. 9, 467.

Antimicrobial, Spectroscopic, Nbo And Nlo Analysis Of (2e)-3-(2h-1,3-Benzodioxol-5-Yl)-N-(4-Chlorophenyl)Prop-2-Enamide

- G. Bélanger, M. Doré, F. Ménard, V.J. Darsigny, Highly Chemoselective Formation of Aldehyde Enamines under Very Mild Reaction Conditions, J. Org. Chem. 71 (2006) 7481-7484.
- T. Kuranaga, Y. Sesoko, M. Inoue, Cu-mediated enamide formation in the total synthesis of complex peptide natural products, *Nat. Prod. Rep.* 31 (2014) 514-532.
- K. Okamoto, M. Sakagami, F. Feng, H. Togame, H. Takemoto, S. Ichikawa, A. Matsuda, Total Synthesis of Pacidamycin D by Cu(I)-Catalyzed Oxy Enamide Formation, *Org. Lett.* 13 (2011) 5240- 5243.
- 9. GaussView, Version 5, Roy Dennington, Todd Keith, and John Millam, *Semichem Inc.*, Shawnee Mission, KS, 2009.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2009.
- N. Sundaraganesan, S. Illakiamani, H. Saleem, P.M. Wojciechowski, D. Michaliska, Spectrochim. *Acta* 61A (2005) 2995-3001.
- A.M. Asiri, M. Akkurt, S. A. Khan, I. Ullah Khan and M.N. Arshad, "(E)-2-Cyano-3-[4-(dimethylamino) phenyl]- N -phenylprop-2-enamide", *Acta Cryst.* (2009). E65, o1303.
- 13. N. Swarnalatha, S.Gunasekaran, S. Muthu, M. Nagarajan, Molecular structure analysis and spectroscopic characterization of 9-methoxy-2H-furo[3,2-g]chromen-2-one with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations, spectrochim. *Acta part A* 137 (2015) 721-729.
- L.G. Wade (Ed), Advanced Organic Chemistry, 4th ed., Wiley, New York, 1992. p.723.

- 15. N. Sundaraganesan, S.Illakiamani, C. Meganathan, B.D. Joshua, Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3-aminobenzotrifluoride, Spectrochim. *Acta A* 67 (2007) 214-224.
- 16. T. Gnanasambandan, S. Gunasekaran, and S. Seshadri, vibrational spectroscopic investigation on propylthiouracil, *International Journal of Recent Scientific Research*, 3 (2012) 590 -597
- 17. G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press, NewYork, 1969.
- Y.X. Sun, Q.L. Hao, W. X. Wei, Z. X. YU, D.D. LU. X. Wang, Y. S. Wang, Experimental and density functional studies on 4-(3,4dihydroxybenzylideneamino)antipyrine, and 4-(2,3,4trihydroxybenzylideneamino)antipyrine, *J. Mol. Struct. Theochem.* 904 (2009) 74-82.
- M. Nakano, H. Fujita, M. Takcathata, K. Yamaguchi, Theoretical Study on Second Hyperpolarizabilities of Phenylacetylene Dendrimer: Toward an Understanding of Structure–Property Relation in NLO Responses of Fractal Antenna Dendrimers, J. Am. Chem. Soc. 124 (2002) 9648-9655.
- M. Szafran, A. komasa, E.B. Adamska, Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride), *J Mol. Struct. Theochem* 827 (2007) 101-107.
- N.T. Abdel-Ghani , M.F.A. El-Ghar, A.M. Mansour, Novel Ni(II) and Zn(II) complexes coordinated by 2arylaminomethyl-1H-benzimidazole: Molecular structures, spectral, DFT studies and evaluation of biological activity, *Spectrochimica Acta* A 104 (2013) 134-142.

How to cite this article:

Abbas Manthiri S *et al* (2017) 'Antimicrobial, Spectroscopic, Nbo And Nlo Analysis Of (2e)-3-(2h-1,3-Benzodioxol-5-Yl)-N-(4-Chlorophenyl)Prop-2-Enamide', *International Journal of Current Advanced Research*, 06(11), pp. 7649-7656. DOI: http://dx.doi.org/10.24327/ijcar.2017.7656.1199
