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A R T I C L E  I N F O                              A B S T R A C T  

 
 

Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for Gini mean 
of n variables are investigated, and some mean value inequalities of n variables are 
established.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. INTRODUCTION 
 

Throughout the paper we denote the set of n-dimensional row vector on the real number field by nR . 
Also, 
  1( ....... ) : 0 1, 2,3,...,n n

n iR X x x R x i n      . 

Let Rqp , and    ,0:, Rba  The Gini Means[47] are defined as  
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It is easy to see that the Gini means  baG qp ,,  are continuous on the domain   , ; , : , ; ,a b p q a b R p q R   

and differentiable with respect to    2, Rba  for fixed Rqp , .Also,Gini means are symmetric with respect to a,b and p,q. 
 

Gini means  baG qp ,, contain many classical two variable means, for example 

   1,0 , ,
2

x yG x y A x y
  is the arithmetic mean, 

   0,0 , ,G x y xy G x y  is the geometric mean, 
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   1,0
2, ,xyG x y H x y
x y  


is the harmonic mean 

and more generally, the p-th power mean is equal to  , 1 1 1,
p p

p p p p
x yG x y

x y  





is the Lehmer mean. 

The basic properties of Gini means, as well as their comparison theorems, log-convexities, and inequalities are studied in papers 
[8, 9, 10, 11, 20, 21, 25, 26, 27, 30, 36, 43, 44, 45, 48]. 
In recent years Schur-convexity and Schur-geometric convexity of Gini mean have attracted the attention of a considerable 
number of mathematicians [5, 19, 26, 28, 31, 33]. Sandor proved that the Gini means  baG qp ,,  are Schur convex on                

(-∞,0] (-∞,0] and Schur concave on [-∞,0) [-∞,0) with respect (p,q) for fixed a,b>0 with ba  . Yang improved Sandor's result 
and proved that Gini means  baG qp ,,  are Schur convex with respect to (p,q) for fixed a,b>0 with ba  if and only if p+q< 0 

and Schur concave if and only if p+q> 0. Wang and Zhang [49, 50] showed that Gini means  baG qp ,,  are Schur convex with 

respect to    2, Rba  if and only if p+q ≥1, p,q ≥ 0 and Schur concave if and only if p+q ≤1, p ≤ 0 or p + q ≤1, q ≤ 0.Gu and 
Shi [12,25] also discussed the Schur convexity. Recently Chu and Xia [6] also proved the same results as Wang and Zhang's. 
The Schur geometrically convexity was introduced by Zhang [50]. Wang and Zhang [49] proved Gini means  baG qp ,, are Schur 

geometrically convex with respect to    2, Rba  if p+q ≥0 and Schur geometrically concave if p+q ≤ 0.Gu and Shi [12,25] 

also investigated Schur geometrically convexities of Lehmer mean  ,1 ,p pG a b and Gini mean  baG qp ,,  respectively. 
Investigation of the elementary properties and inequalities for Lp(x; y) has attracted the attention of a considerable number of 
mathematicians (see [1, 3, 10, 12, 14, 21, 23, 26, 28, 31]). 
 

In 2009, Gu and Shi [11] discussed the Schur convexity and Schur geometric convexity of the Lehmer means Lp(x, y) with respect 
to (x, y)R2

+ for fixed p. Subsequently, Xia and Chu [36] researched the Schur harmonic convexity of the Lehmer means Lp(x, y) 
with respect to (x, y)R2

+  for fixed p. 
 

In 2016, Chun-Ru Fu and et al[51], defined Lehmer mean of n variables ( )PL x  on certain subsets of nR  as follows 

1
1 2

1

1

( ) ( , ,..., ) (1.2)
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p p n n
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L x L x x x
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and studied Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for Lehmer mean of n variables ( )PL x  

on certain subsets of nR , and also established some interesting inequalities. This paper motivated us to study about Schur-
convexity for Gini mean of n variables. 
 

Let 1( ....... ) .n
nx x x R  For Schur-convexity and Schur-geometric convexity of n variables Gini mean, and consider               

p = 1 + q, then
 1

1
1 2

1

( ) ( , ,..., ) (1.3)

n
q

i
i

q q n n
q
i

i

G x G x x x
x

x







 



 

 

K .M Nagaraja and P Siva Kota Reddy [46] obtained the following results. 

Lemma 1.1[46]: For a,b> 0, then the sequence  





0n

nn
n bag  is log convex. 

Lemma  1.2 [46]: For a,b > 0, then the generalized Contra-harmonic mean   11,  


 nn

nn

n ba
babaC  

is increasing with respect to the parameter n , that is    1 , ,n nC a b C a b   for all real n. 
Theorem 1.3: The generalized Contra-harmonic mean is monotonically increasing with respect to the parameter  n  if and only if 
the sequence ng  of Lemma 1.1 is log-convex. 
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Remark: ( ) ( )p qL x G x  

Proof:   Let   ,n n
ng a b  consider 
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This proves that 11
2
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ng a b   
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 i.e., ( ) ( )p qL x G x .    
  

In this paper, we study Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity of ( )qG x  on certain subsets 

of nR . As consequences, some interesting inequalities are obtained. 
 

2. DEFINATION AND LEMMA 
 

We need the following definitions and lemmas. 
 

Definition 2.1: ([17,27]).  Let   1 2 3, , ,..., nx x x x x  and  1 2 3, , ,..., n
ny y y y y R   

1. x is said to be majorized by y  (in symbols x y ),    
1 1

k k

i i
i i

x y
 

  for 1,2,3..., 1k n   and
1 1

n n

i i
i i

x y
 

    where 

   1 ... nx x   and    1 ... ny y  are rearrangement of x  and y  in a descending order. 

2. nR is called a convex set, if  1 1 2 2, ,..., ,n nx y x y x y         for any x and y  ,where 

 and 0,1   with 1   

3. Let nR ,  the function nR:  is said to be schur convex function on   if x y   on  implies 
).()( yx     is said to be a Schur concave function on  ,  if and only if   is Schur convex function. 

 

Definition 2.2: ([20,44]). Let   1 2 3, , ,..., nx x x x x and  1 2 3, , ,..., n
ny y y y y R   . 

 

1. nR is called geometrically convex set, if  1 1 2 2, , ..., ,n nx y x y x y       for any x and y  , where 

 , 0,1    with 1  .  

2. Let  nR   , the function 
nR:  is said to be schur geometrically convex function on   if 

   1 2 1 2ln , ln ,..., ln ln , ln ,..., lnn nx x x y y y   on   implies ).()( yx     is said to be a Schur geometrically 

concave function on    if and only if   is Schur geometrically convex function. 
 

Definition 2.3: ([4,18]). Let   1 2 3, , ,..., nx x x x x and  1 2 3, , ,..., n
ny y y y y R   . 

 

1. A set nR  is said to be a harmonically convex set, if 

     
1 1 2 2

1 21 2

, ,...,
1 1 1

n n

n n

x yx y x y
x y x y x y     

 
 
       

 

for any x and y  , and  [0, 1]. 



International Journal of Current Advanced Research Vol 6, Issue 10, pp 6688-6698, October 2017 
 

 

6691 

2. A function  R:  is said to be a Schur -harmonically convex function on  , if  

1 2 1 2

1 1 1 1 1 1, ,...,  , ,..., ,
n nx x x y y y

   
   
   

 implies ).()( yx    is said to be a Schur harmonically concave function 

on    if and only if   is a Schur -harmonically convex function. 
 

Lemma 2.4: ([17,27]).  Let  nR  be symmetric with non emptyinterior convex set and let  R: be continuous on 

   and differentiable on 0 . Then   is Schur convex (concave) if        
 

     .00)(
21

21 
















x
X

x
Xxx 

 
 

holds for any   0
1 2 3, , ,..., nx x x x x  . 

 

Remark 2.5: [9,19]. It is easy to see that the condition (2.1) is equivalent to  
 

   
1i i

x x
x x

 



 


 
    (or  resp. ),  i=1,...,n-1,  for all ,x D    

 

where  1 2: ... nD x x x x   
 

 

The condition   (2.1) is also equivalent  to 
 

   
11 







ii x
X

x
X 

  (or  resp. ),  i=1,...,n-1,  for all ,x E    

where   1 2: ... nE x x x x    . 
 

Lemma 2.6: ([20,44]).  Let nR  be a symmetric geometrically convex set with non empty interior 0.  Let  R:  

be continuous on  and differentiable on 0 . Then  is Schurgemetrically convex (concave) function 

  0
1 2 3, , ,..., nx x x x x  if and only if   is symmetric on  and 

     .00)(
2

2
1

121 
















x
Xx

x
Xxxx 

 

holds for any    0
1 2 3, , ,..., nx x x x x   

 

Remark 2.7: It is easy to see that the condition (2.2) is equivalent to  
   

1
1

i i
i i

x x
x x

x x
 




 


 
    (or  resp. ),  i=1,...,n-1,  for all ,x D    

where  1 2: ... nD x x x x     

The condition   (2.2) is also equivalent to 
 

   
1

1
i i

i i

x x
x x

x x
 




 


 
  (or  resp. ),  i=1,...,n-1,  for all ,x E    

where   1 2: ... nE x x x x    . 
 

Lemma 2.8: ([4,18]).  Let  nR  be symmetric harmonically convex set with non empty interior 0 . Let  R: be 

continuous on    and differentiable on 0 . Then  is Schur harmonically convex (concave) function 

  0
1 2 3, , ,..., nx x x x x  if and only if    is symmetric on  and 

     .00)(
2

2
2

1

2
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holds for any    0
1 2 3, , ,..., nx x x x x   

 

Remark 2.9: It is easy to see that the  condition  (2.3)  is equivalent to  
 

   2 2
1

1
i i

i i

x x
x x

x x
 




 


 
    (or  resp. ),  i=1,...,n-1,  for all ,x D    

where  1 2: ... nD x x x x   
 

 

The condition   (2.3) is also equivalent  to 
 

   2 2
1

1
i i

i i

x x
x x

x x
 




 


 
  (or  resp. ),  i=1,...,n-1,  for all ,x E    

where   1 2: ... nE x x x x    . 
 

Lemma 2.10: Let 1 2 ... 0, .nx x x m R      Then 

1 2
1 1 1 1

1 2

...
.

...

m m m
n

nm m m
n

x x x
x x

x x x  

  
 

  
 

 

Proof  

   
     

1 1 1
1 1 2 1 2

1 1 1
1 1 1 2 1 2 1

... ...

... 0,

m m m m m m
n n

m m m
n n

x x x x x x x

x x x x x x x x x

  

  

      

       
 

   
     

1 1 1
1 2 1 2

1 1 1
1 1 2 2

... ...

... 0.

m m m m m m
n n n

m m m
n n n n n

x x x x x x x

x x x x x x x x x

  

  

      

       
 

 

This is proof of Lemma 2.10 

Lemma 2.11: ([17]).  1 2
1

1Let , ,..., and ( ) .Then
n

n
n n i

i
x x x x R A x x

n


   
 

 
 
 
 

3. MAIN RESULTS 
 

Theorem 3.1  1 2Let ( , ,..., ) , 2 and .n
nx x x x R n q R     

     

     

-1
I If 1, then for any 0, isSchur-convex with ,

1

1
II If 0, then for any 0, isSchur-concave with ,

1

n

q

n

q

q a
q a G x x a

q

q a
q a G x x a

q

 
    

 
   

 

 

Proof 
 

Straightforward computation gives 

 
1 1

1 1
2

1

( 1)
1,2,..., ,

n n
q q q q

i j i j
q j j

ni q
j

j

q x x qx x
G x

i n
x

x

 

 



 


 
  

 
 

 


                                                                                        (3.1.1) 

and then 
 

 
 

   1 2( ), ( ),..., ( ), , ,..., .n n n n

n

u A x A x A x x x x x  


     

 2
1

1

1, 2,..., ,q q i

n qi i
jj

G x G x f x
i n

x x x
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where      1 1
1 1

( 1) n nq q q q
i i j i jj j

f x q x x qx x 
 

    . 

It is clear that  qG x  is symmetric with nx R .  Without loss of generality, we may assume that  

2 ... 0.nx x x     
 

For any a > 0, according to the integral mean value theorem, there is a    which lies between    

1andi ix x   such that 

         dxxqqadxxqqxxaqxxq i

i

i

i

x

x
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x

qq
i

q
i

q
i

q
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211
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1 11.)1(  
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21 11                                                                                                                             (3.1.2) 
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21 1)1( 
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 ii
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Proof of (I):  When 1q  and 
 

1 2

1
... 0

1n

q a
a x x x

q


     


, from 3.1.2 we have 

    0.)1( 1
1

1
1  





q
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i xxaqxxq
 
 

that is 
      
 

 
and then from Lemma 2.10  it follows that   
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namely,   0if x  , and then  
   

1

q q

i i

G x G x
x x 

 


 
.  

By Lemma 2.4 it follows that Gq (x) is  Schur-convex with  
( 1) ,

1

n
q ax a
q

 
   

. 

 

Proof of (II):  When q < 0  and 
 

1 2

1
... 0,

1 n

q a
x x x a

q


     


 

    0)1( 1
1

1
1  
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q

i
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i
q

i xxqaxxq  
and then from Lemma 2.5, it follows that   

 
  ,)1(
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namely,  

  0if x  , and then  
   

1

q q

i i

G x G x
x x 

 


 
.  

By Lemma 2.4 it follows that Gq (x) is  Schur-concave with  
( 1),

1

n
q ax a
q

 
   

. 

The proof of Theorem 3.1 is complete. 
 
Theorem 3.2  1 2Let ( , ,..., ) , 2 and .n

nx x x x R n q R     

 
  a

xxq
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2

2

1I If and 0, then for any 0, is Schur-geometrically concave with ,
2 1

1II If , then for any 0, isSchur-geometrically convex with , .
2 1

n

q

n

q

qq q a G x x a a
q

qq a G x x a a
q

  
         

  
        

 

Proof 
 

From (3.1.1), we have 
     

1 2
1

1

1,2,..., ,q q i
i i

ni i q
j

j

G x G x g x
x x i n

x x
x






 
  

   
 
 
  

where  

     1 1 1
1 1

1 1

( 1) .
n n

q q q q q q
i i i j i i j

j j
g x q x x x q x x x  

 
 

       

It is clear that  qG x  is symmetric with nx R .  Without loss of generality, we may assume that  

2 ... 0.nx x x     
For  any  a > 0 , according to the integral mean value theorem, there is a  which lies between    

1andi ix x   such that 

        dxxqadxxqxxaqxxq i
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q
i

q
i

q
i 









 
11

122
1

1
1

1 1.)1(  

                                      
    dxxqaxqi

i

x

x

qq



1
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Proof of (I):  When 
2
1

q  and 
2

1 2 ... 0
1n

qa x x x a
q

 
       

, from 3.2.1 we have 

    0.)1( 1
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1
1  
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i xxaqxxq

 
 

that is 
 
 
 
 
 
 and then from Lemma 2.10, it follows that   
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namely,   0ig x  , and then  
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. By Lemma 2.6 and remark 2.7 it follows that   Gq (x) is  Schur- 

geometrically convex with  
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Proof of (II):  When q < 
2
1

  and 
2

1 2 ... 0 ,
1 n

q a x x x a
q

 
       

 

    0.)1( 1
1

1
1  




 q
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i

q
i xxaqxxq  

and then from Lemma 210, it follows that   
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namely,  

  0ig x  , and then 
   

1
1

q q
i i

i i

G x G x
x x

x x


 


 
.  

By Lemma 2.6 it follows that Gq(x) is Schur- geometrically concave with

2

,
1

n

qx a a
q

  
      

. 

Proof of (III): When q=0   0ig x   it follows that Gq(x) is Schur- geometrically concave with  nx R  
The proof of Theorem 3.2 is complete. 
Theorem 3.3.  1 2Let ( , ,..., ) , 2 and .n

nx x x x R n q R     

   

     

( )I If 2, then for any 0, is Schur-Harmonicallyconvex with ,
2

II If 2, then for any 0, isSchur-Harmonicallyconcave with ,
2
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From (3.1.1), we have 
     

 
2 2

1 2
1

1

1, 2,..., 1,q q i
i i n qi i

jj

G x G x h x
x x i n

x x x





 
   

    
where  

      .)1(
1 1

11
1

12
1

2   







 
n

j

n

j
q

j
q

i
q

i
q

j
q

i
q
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It is clear that  qG x  is symmetric with nx R .  Without loss of generality, we may assume that  

2 ... 0.nx x x     
For  any  a > 0 , according to the integral mean value theorem, there is a  which lies between    

1andi ix x   such that 
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Proof of (I):  When 2q  and 1 2 ... 0
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, from 3.3.1 we have 
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and then from Lemma 2.10, it follows that   
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namely,   0ih x  , and then  
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. 

 By Lemma 2.8 and remark 2.9  it follows that   Gq (x) is  Schur- harmonically convex with  ,
2

n
qx a a
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Proof of (II):  When 2q   and 1 2 ... 0 ,
2 n
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namely,   0ih x  , and then  
   2 2

1
1

q q
i i

i i

G x G x
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. 

By Lemma 2.8 and Remark 2.9  it follows that Gq(x) is  Schur- harmonically concave with  ,
2

n
qx a a

q
  

     
. 

The Proof of Theorem 3.3 is complete. 
 

4. Applications 

Theorem 4.1: 
 1

If 1, then for any 0, , then we have
1

n
q a

q a x a
q

 
   

 
 

  ( )n qA x G x                                                                                                                                               (4.1) 

 1
If 0, and , then the inequality (4.1) is reversed

1

n
q a

q x a
q

 
  

   
 

Proof:   If 
 1

1, then for any 0, ,
1

n
q a

q a x a
q

 
   

 
then by theorem 2.5 from Lemma 2.11 we have 

  ( )q qG u G x , 

rearranging gives (4.1) 
 1

If 0, and , then the inequality (4.1) is reversed
1

n
q a

q x a
q

 
  

 
 

The proof is complete.  

Theorem 4.2:
2

1If , then for any 0, , then we have
2 1

n

qq a x a a
q

  
        

 

  ( )n qG x G x                                                                                                                                                  (4.2) 
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where 1 2( ) ...n
n nG x x x x is geometric mean of x.  

2
1If , 0 and , then the inequality (4.2) is reversed
2 1

n

qq q x a a
q

  
        

 

Proof:  By Lemma 2.11 we have 
 
 
 
 
 

2
1If and, ,
2 1

n

qq x a a
q

  
       

, by theorem 2.6    it follows 

     1 2,..., , ,..., ,q n n q n

n

G G x G x G x x x
 
 
 
 


 

rearranging gives (4.2) 
2

1If , 0 and ,
2 1

n

qq q x a a
q

  
        

then the inequality (4.2) is reversed. 

The proof is complete. 
 

Theorem 4.3: 
 

If 2, then for any 0, , then we have
2

n
q a

q a x a
q

 
   

 
 

  ( )n qH x G x                                                                                                                                                                           (4.3) 

where

1

( ) 1n n

i
i

nH x

x




is the harmonic  mean of x.  

If 2, , then the inequality (4.3) is reversed
2

n
qq x a a

q
  

       Proof:  By Lemma 2.11 we have  
 
 
 
 
 
 
 
 

If 2and, ,
2

n
qq x a a

q
  

     
, by theorem 2.7 it follows 

     1 2,..., , ,..., ,q n n q n

n

G H x H x G x x x
 
 
 
 


 

rearranging gives (4.3) If 2,and ,
2

n
qq x a a

q
  

      
then the inequality (4.3) is reversed. 

The proof is complete. 
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