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A numerical method for evaluating the Hankel transform of order of function is given. The
method is based upon B-polynomial multi-wavelets forms an orthonormal bases for we
expand the part of the integrand in its wavelet series reducing the Hankel transform integral
reduces a series of Bessel function multiplied by the wavelet coefficients of the input
function. The proposed method has been illustrated by examples.

INTRODUCTION
The Hankel transform is a very useful tool in broad area of
physical problems which have an axial symmetry [1]. There
are two types of the Hankel transform. The first one is defined
on the semi-infinite interval. In this case Hankel transform
and inverse Hankel transforms are defined by
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where nJ is the n-th order Bessel function of the first kind [4].

In the case of the finite Hankel transform only a direct
transform has an integral form, without loss of generality. It is
defined by

dtptJtftpF nn )()()(
1

0




. (3)

The Hankel transform is also useful in geophysics and
Cosmology, for example [3, 4].    In some cases, analytical
evaluations are rare and then numerical methods have
becomeimportant. The usual classical methods are

Trapezoidal rule, Cotes rule etc. in all these methods the
integrand is generally replaced by a sequence of polynomials;
which are more accurate, if integrand is smooth. But in this

paper, I have used )()( ptJtft n and )()( ptJpFp nn

which are rapidly oscillating functions for large t and p ,

respectively. These difficulties can be solved by different
techniques. First, the fast Hankel transform is proposed by
Siegman and Huang et al. in [2, 8]. The second method is
based on the use of Filon quadrature philosophy [6]. In Filon
quadrature philosophy, the integrand is product of two
components (assume), first is slowly varying component and
second is rapidly oscillating component. In the case of the
Hankel transform, the former is )(tft and the latter is

)( ptJ n . Later in 2003 Postnikov [3], Zykov and Postnikov

[9] proposed, for the first time a novel and powerful method
for computing zero and first order Hankel transform by using
Haar bases (orthogonal) and piecewise-linear bases (non
orthogonal), respectively.More, recently, Singh et al. [10]
give another powerful method, for solving the Hankel
transform by using linear Legendre multiwavelets. In this
paper, we present a method that is very accurate and fast for
numerical evaluation of Hankel transform using B-
polynomials multiwavelets. Numerical evaluations of test
functions with known analytical Hankel transforms illustrate
the method.

B-Polynomial Multiwavelets: Wavelets as a family of
functions of constructed from translation and dilation of a
single function , called the mother wavelet, we define

wavelets by
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  aRba

a

bt

a
tab  (4)

where a is called a scaling parameter which measures the

degree of scale, and b is a translation parameter which
determines the time location of the wavelet. When parameters

a and b vary continuously then wavelets called continuous

wavelets. If we restrict the parameter a and b to discrete

values as 0,1, 00000   baabnbaa kk , and n,

and k positive integers. We fix two positive constants 0a and

0b , define discrete wavelets:

 ,)( 00

2/

0, bntaat kk

nk   (5)

where )(, tnk form a wavelets basis for )(2 RL . In

particular, when 1,2 00  banda then )(, tnk forms an

orthonormal basis [5, 9 and 11].
In general the B-polynomials of mth degree are defined on

the interval [0, 1) as [7, 11]

mixx
imi

m
tB imi

mi 


  0,)1(
!)(!

!
)(, . (6)

It can be easily shown that the B-polynomials is positive and
also the sum of all the B-polynomials is unity for all real x
belonging to the interval [0, 1) i.e.

.1)(
0

, 


m

i
mi tB (7)

We can use )(, tB mi as orthonormal basis and expand any

polynomial of degree m in linear combination





m

i
mii mtBctP

0
, .1),()( (8)

The B-polynomials can also define on the interval [0, 1] by

using recursive definition of )(, tB mi . The B-polynomial

multi-wavelets ),,,()(, tmnktmn   have four

arguments: translation argument ,12...,,2,1,0  kn
dilation argument k can assume any positive integer, m is the
order for    B-polynomial and t is the normalized time [11].
They are defined on the interval [0, 1) as





 




otherwise

n
t

n
forntWB

t kk
k

m
k

mn

,0
2

1

2
),2(2

)(
2/

, (9)

where .12...,,2,1,0,...,,1,0  knMm In

equation (2.6) the coefficient 2/2k is for orthonormality, the

dilation parameter is ka  2 and translation parameter is
knb  2 . Here, )(tWBm is the orthonormal form of B-

polynomials of order m.The following Lemma which has
been purposed by [11] showed an upper bound to estimate the
error.

Lemma

Suppose that the function Rf ]1,0[: is m times

continuously differentiable, ]1,0[mCf  . Then TC
approximate f with mean error bounded as follows:

)(sup
2!

1 )(

]1,0[
xf

m
Cf m

x
km

T


 . (10)

As can be seen that by Lemma 2.1 the upper bound of the

error depends upon the factor kmm 2!/1 which shows that

the error rapidly tend to zero as m and k increase slowly. Note
that in the classical orthogonal basis such as Fourier,
Legendre, Chebyshev, etc, the upper bound of the error
depends on !/1 m . This is the most advantage of the new

technique.

Derivation of the Method

In this section, we give derivation of the method of Hankel
transform. Consider the function )(tf having compactly

supported. This function )(tf represent physical fields, which

is zero outside a disk with finite radius, say R. In cases where
the function )(tf is not compact, we assume that given

0 there exists a compact interval I such that

 Ixfortf )( . Hence it is more appropriate to

consider the finite Hankel transform. Suppose
],0[)sup( hf  then (1) written by

dtptJtftpF nn )()()(
1

0




, (11)

known as the finite Hankel transform (FHT), where t is
replace by t/h. writing )()( tgtft  in equation (11), we get

dtptJtgpF nn )()()(
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0
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

. (12)

As ]1,0[)( 2Ltg  ,
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
0 0

),()(
n m

mnmn tctg  (13)

where

))(),(( ttfc mnmn  , in which (., .) denote the inner

product.
If the infinite series in (13) is truncated, then equation can be
written as
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where C and )(t are 1)1)(12(  Mk matrices

given by
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From equations (12) and (14), we get

dtptJtCpF n
T

n )()()(
1

0
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

(15)

dtptJtC n
T )()(

1

0
 .

Illustrative examples

We applied the method presented in this paper and solved
three examples given in [10].

Example

The circ function is very useful that can be defined as









at

at
atCirc

,0

,1
)/( . (16)

The zeroth-order Hankel transform of )/( atCirc is the

Sombrero function [2], given by

ap

apJa
pS

)(
)( 1

2

0  . (17)

Putting a = 1, we have

p

pJ
pS

)(
)( 1

0  . (18)

Since in this case B-polynomial multi-wavelets series
representation (13) at level 01  kandM we obtain

)(0)(
3

1
)()()( 010001010000 tttctctg   .

Therefore, from (15) we get the exact solution

p

pJ
dtptJtpF nn

)(
)()( 1

1

0

 


Example

Taking ,10,1)( 2  tttf then

p

pJ
pF

2

)2/(
)( 1

1


 . (19)

The truncated B-polynomial multi-wavelets series
representation (15) gives the approximate solution of (19) at
level 0,5  kM we study that over finite interval [0, 1],

equation (15) is approximate for )(1 pF in fig.1 we show that

the exact transform )(1 pF (solid line), and the transform

)(1 pF


Example

In this example, we choose as a test function the generalized
version of the top-hat function, gives as

0,])()([)(  aatHtHttf  and )(tH is the step

unit function .
0,0

0,1
)(








t

t
tH

Then

p

pJ
pF

)(
)( 1 

 .

We take 5,
10

1
,1  a and observe that the errors are quite

small as shown in Fig.3 and Fig.4 respectively.

Figure 1 The exact transform, )(1 pF (solid line) and the

approximation transform, )(1 pF


(dotted-line) truncated at a level

.0,5  kM

5 10 15 20

0.05

0.10

0.15

Figure 2. Absolute error between the exact transform )(1 pF and

the approximation transform, )(1 pF


truncated at a level

.0,5  kM

5 10 15 20

0.0002

0.0004

0.0006

0.0008

0.0010
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CONCLUSION
The aim of the present work, solving Hankel transform having
compact support using B-polynomial multiwavelets [11], it
makes them more useful and simple in actual computations.
Our choice of B-polynomial multiwavelets makes its more
attractive in application in applied physical problems. It give
better approximation compared to that of Postnikov [3],
Zykov & Postinikov [9] and Singh et al. [10].
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