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1. Introduction  
Azriel Rosenfeld introduced fuzzy graph in 1975 [5]. Though 

introduced recently, it has been growing fast and has 

numerous applications in various fields. During the same time 

Yeh and Bang have also introduced various concepts in 

connectedness with fuzzy graphs [7]. Mordeson and Peng 

introduced the concept of operations on fuzzy graphs, Sunitha 

and Vijayakumar discussed about the operations of union, 

join, Cartesian product and composition on two fuzzy graphs 

[4]. The degree of a vertex in some fuzzy graphs was 

discussed by Nagoorgani and Radha [6]. Nagoorgani and 

Malarvizhi have defined different types of fuzzy graphs and 

discussed its relationships with isomerism in fuzzy graphs [3]. 

 In this paper we define Triple layered complete fuzzy graph 

(TLCFG) or 3 – D Fuzzy graph which gives a 3

fuzzy graph theory and some of its properties were discussed. 

Section two contains the basic definitions in fuzzy graphs, in 

section three we introduce a new fuzzy graph called a Triple

layered complete fuzzy graph, section four presen

theoretical concepts of TLCFG and finally we give conclusion 

on (TLCFG).  

2. Preliminaries 

2.1 Definition:  A fuzzy graph G is a pair of functions G: (σ, 

µ) where a fuzzy subset of a non-empty set V and µ is a 

symmetric fuzzy relation on σ. The underlying crisp graph of 

G: (σ, µ) is denoted by G* :( σ* , µ* ) [5]. 
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Rosenfeld introduced fuzzy graph in 1975 [5]. Though 

introduced recently, it has been growing fast and has 

numerous applications in various fields. During the same time 

Yeh and Bang have also introduced various concepts in 

[7]. Mordeson and Peng 

introduced the concept of operations on fuzzy graphs, Sunitha 

and Vijayakumar discussed about the operations of union, 

join, Cartesian product and composition on two fuzzy graphs 

[4]. The degree of a vertex in some fuzzy graphs was 

iscussed by Nagoorgani and Radha [6]. Nagoorgani and 

Malarvizhi have defined different types of fuzzy graphs and 

discussed its relationships with isomerism in fuzzy graphs [3].  

In this paper we define Triple layered complete fuzzy graph 

Fuzzy graph which gives a 3-D structure in 

fuzzy graph theory and some of its properties were discussed. 

Section two contains the basic definitions in fuzzy graphs, in 

new fuzzy graph called a Triple 

h, section four presents the 

finally we give conclusion 

A fuzzy graph G is a pair of functions G: (σ, 

empty set V and µ is a 

elation on σ. The underlying crisp graph of 

2.2 Definition:  Let G: (σ, µ) be a fuzzy graph, the order of G 

is defined as O (G) = ∑ σ (u) /�

2.3 Definition: Let G: (σ, µ) be a fuzzy graph, the size of G is 

defined as S (G) = ∑ μ(u, v) / �

2.4 Definition: Let G: (σ, µ) be a fuzzy graph, the degree of a 

vertex u in G is defined as  

dG(u)= ∑ μ (u, v) /�≠�, ��� and is denoted as dG (u) [10]. 

2.5 Definition: A fuzzy graph G: (σ , µ ) is said to be strong 

fuzzy graph if µ(u , v)=σ(u) ʌ σ(v) for all (u , v) in µ* [9]. 

2.6 Definition: Let G be a fuzzy graph, 

G is denoted as  Gµ̍ : (σµ,µµ)  

�(�)ʌ�(�) − μ(�, �) �� μ(�, �) > 0 

3. Triple Layered Complete Fuzzy Graph( Tlcfg)

3.1 Definition: Let σTL: V→ [0, 1] be a subset of V and µ

V× V→ [0, 1] be a symmetric fuzzy relation on σ

vertex of the Triple Layered Complete Fuzzy graph are

adjacent. The vertex set of complete triple layered fuzzy graph 

be σ ∪ µ∪ µ and it’s denoted by 

Let σTL: V→ [0, 1] be a fuzzy subs

triple layered fuzzy graph on σ

(σTL, µTL). Any two vertices of the T
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Let G: (σ, µ) be a fuzzy graph, the order of G 

�∈� [8].  

Let G: (σ, µ) be a fuzzy graph, the size of G is 

�,v∈� [8].  

Let G: (σ, µ) be a fuzzy graph, the degree of a 

and is denoted as dG (u) [10].  

A fuzzy graph G: (σ , µ ) is said to be strong 

σ(v) for all (u , v) in µ* [9].  

Let G be a fuzzy graph,  the µ –compliment of 

 where   σ* ∪ µ*and µµ (u, v) ={ 

) > 0 �� μ(�, �) = 0 [4].  

Triple Layered Complete Fuzzy Graph( Tlcfg)  

→ [0, 1] be a subset of V and µTL: 

a symmetric fuzzy relation on σTL. Any two 

Layered Complete Fuzzy graph are 

he vertex set of complete triple layered fuzzy graph 

µ and it’s denoted by           K σ	∪ µ ∪µ. 

Or 

→ [0, 1] be a fuzzy subset of V then the complete 

n σTL is defined on K σ ∪ µ∪ µ= 

). Any two vertices of the TLCFG are adjacent.  
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Example: 3.1.1. Consider the complete fuzzy graph with 3 vertices (K3) 

 

Figure 1. A complete fuzzy graph (K3) 

 
 
 
 
 

 

 
 

  
 
    
  
  
  
  
   
  

Figure 2. TLCFG of K3 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3. Image of TL (K3) 
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Example 3.1.2: Consider the complete fuzzy graph with 4 vertices (K4). 

 

 
 
  
 
 
 
 
 
 
 
 

                                      Figure 4. A complete fuzzy graph (K4)  

 
 
 
 
 
 
 

 

 
                             
 
 
 
 
 
 
 

 
 
 
 
 
 

                                                       

                                                         Figure 5. TLCFG of K4 
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Figure 6. Image of TL(K4) 

 

 

 

 

Example 3.1.3: Consider the complete fuzzy graph with 5 vertices (K5).  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. A complete fuzzy graph (K5) 
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Similarly we can convert complete fuzzy graph into Triple 
layered complete fuzzy graph.  

4. Theoritical Concepts  

4.1 Theorem: The order of Triple layered complete fuzzy 
graph Kσ∪µ∪ µ is equal to the sum of the order and 
of the complete graph  

Proof: As the node set of complete Triple layered fuz
and the fuzzy subset σTL on  

σ ∗∪ µ∗ ∪ µ ∗	is defined as,  

σTL ={ �(�) �� � ∈ σ ∗  
2 � (��) �� ∈ � ∗  

By the definition, order of the Triple layered fuzzy graph is, 

O (TL (G)) =  ∑ σTL(u)�Î�∪�∪�                           
2.2) 

        = ∑ σTL(u)�Î�   +  ∑ σTL(u)�Î�                  

        =∑ σ(u)�Î�   + 2 ∑ μ(u)�Î� 		            
σTL(u)) 

O (TL (G))=Order (G) + 2 size (G)  
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Figure 8. TLCFG of K5 

omplete fuzzy graph into Triple 

layered complete fuzzy 
is equal to the sum of the order and twice size 

layered fuzzy graph 

layered fuzzy graph is,  

                        (by definition 

                  

            (by definition of 

4.2 Theorem:  Every Triple layered complete fuzzy graph is a 
strong fuzzy graph  

Proof: As the node set of TL (G) is σ 
fuzzy subset σTL on σ ∗∪ µ∗ ∪

σTL ={ �(�) �� � �� ∗ 
           2μ(��) �� �� �μ ∗  

By the definition of Triple layered complete fuzzy graph 

µ (u, v) =σ (u) ʌ σ (v) -----------------------

And also by the definition of strong fuzzy graph 

µ (u, v) =min (σ (u), σ (v)) -----------------

From equation① &②; we get 

Every Triple layered complete fuzzy graph is a strong fuzzy 
graph  

Example 4.2.1: We choose TL (G) of K

v1=0.1; v2=0.6; v3=0.5 and e
e5=0.5; e
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layered complete fuzzy graph is a 

As the node set of TL (G) is σ ∗∪ µ∗ ∪ µ ∗	 and the 
µ ∗ is defined as,  

  

layered complete fuzzy graph  

-----------------------①  

And also by the definition of strong fuzzy graph  

-----------------②  

; we get  

layered complete fuzzy graph is a strong fuzzy 

L (G) of K3 graph,  

=0.5 and e1=0.1; e2=0.5; e3=0.1; e4=0.1; 
=0.5; e6=0.1
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Figure 9. TLCFG of K3 

(i) µ (v1, v2) = σ (v1) ʌ σ (v2)  
         =0.1 ʌ 0.6   
         =0.1 
(ii) µ (e1, e2) = σ (e1) ʌ σ (e2)     
         =0.1 ʌ 0.5  
         =0.1  
(iii) µ (v1, e1) = σ (v1) ʌ σ (e1)  
                     =0.1 ʌ 0.1  
                     =0.1 
(iv) µ (e2, e3) = σ (e2) ʌ σ (e3)  
                     =0.5 ʌ 0.1  
                     =0.1 
(v) µ (e4, e5) = σ (e4) ʌ σ (e5)  
                     =0.1 ʌ 0.5  
                     =0.1 
(vi) µ (e4, e6) = σ (e4) ʌ σ (e6)  
                     =0.1 ʌ 0.1  
                     =0.1 
(vii) µ (v2, e4) = σ (v2) ʌ σ (e4)  
                     =0.6 ʌ 0.1  
                     =0.1 
 every triple layered fuzzy graph is a strong fuzzy graph  

 

4.3 Theorem  

If G is a strong fuzzy graph then the µ-complement of TL (G) 
is isolated vertices  

Proof  

Let G be a strong fuzzy graph by the previous theorem, Every 
Triple layered complete graph is strong fuzzy graph  

µ (u, v) =σ (u) ʌ σ (v) →①  

And by the definition of µ-complement,  

µ µ (u, v) = σ (u) ʌ σ (v) - µ (u, v)  

    = µ (u, v) - µ (u, v)  

    =0  

µ µ (u, v) =0 for all u, v in σ ∗∪ µ∗ ∪ µ ∗ 

dTL (u)=0 for all u in σ ∗∪ µ∗ ∪ µ ∗	  

Every vertices of complement of TL (G) have isolated vertices.  
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xample 4.3.1  

TLCFG (Kn) = K2n-1 +  TLCFG (Kn-1)  
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Figure 10. TLCFG of   K3 

Figure 11. µcomplement TLCFG of K3 . 
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Example 4.3.1  
(i) TLCFG(K4) = K2(4)-1 + TLCFG(K3)  
                    = K7 + K9  
                   = K16  
TLCFG (K4) = CFG (K16)  
(ii) TLCFG(K5) = K2(5)-1 + TLCFG(K4)  

                    = K9 + K16      
     
                    = K25  
TLCFG (K5) = CFG (K25)  

Table 1: Relation between complete fuzzy graph and Triple layered complete fuzzy 

COMPLETE FUZZY GRAPH TRIPLE LAYERED COMPLETE FUZZY GRAPH 

K3                         TLCFG(K3)=K9 

K4 TLCFG(K4)=K16 

K5 TLCFG(K5)=K25 

K6 TLCFG(K6)=K36 

K7 TLCFG(K7)=K49 

K8 TLCFG(K8)=K64 

K9 TLCFG(K9)=K81 

K10                         TLCFG(K10)=K100 

K11    TLCFG(K11)=K121 

K12                         TLCFG(K12)=K144 

K13    TLCFG(K13)=K169 

K14    TLCFG(K14)=K196 

K15    TLCFG(K15)=K225 

K16    TLCFG(K16)=K256 

K17    TLCFG(K17)=K289 

K18    TLCFG(K18)=K324 

K19    TLCFG(K19)=K361 

K20    TLCFG(K20)=K400 

K21    TLCFG(K21)=K441 

K22    TLCFG(K22)=K484 

 
Remark:  

The edge relation between complete fuzzy graph and 
Triple layered complete fuzzy graph is, TLCFG (Kn) = K2n-1 + 
TLCFG (Kn-1) Number of edges (�T�) = 2�TL(�T� − 1) /2 nTL  

represents number of vertices in TLCFG. 

 Conclusion  

In this paper we laid a concept triple layered complete 
fuzzy graph(TLCFG) and illustrated with some examples. 
Further structures can be developed by increasing number of 
cycles. These structural patterns with the cycles gives  further  
different patterns in networking models.  
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