International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319 - 6505, Impact Factor: SJIF: 5.995
Available Online at www.journalijcar.org
Volume 6; Issue 6; June 2017; Page No. 4463-4471
DOI: http://dx.doi.org/10.24327/ijcar.2017.4471.0520
Research Article

CONSTRUCTION OF PARTIALLY EFFICIENCY BALANCED BLOCK DESIGNS WITH AND WITHOUT REPEATED BLOCKS

*Rajarathinam, A ${ }^{1}$,, Mahalakshmi, \mathbf{S}^{1} and Ghosh, D.K ${ }^{2}$
${ }^{1}$ Department of Statistics, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India ${ }^{2}$ Department of Statistics, Saurashtra University, Rajakot-360005, Gujarat, India

ARTICLE INFO

Article History:

XXXXXXXXX

Key words:

Balanced design, Variance balanced design, Efficiency balanced Design, Partially efficiency balanced design, Efficiency factor

Abstract

Two new methods have been proposed for the construction of Partially Efficiency Balanced Designs with and without repeated blocks. Method 1 discusses the construction of Partially Efficiency Balanced Design with repeated blocks by reinforcing some treatments in two BIBDs of the series $v_{1}=b_{1}=s, r_{1}=k_{1}=s-1, \lambda_{1}=s-2$ and $v_{2}=b_{2}=s+1, r_{2}=k_{2}=s, \lambda_{2}=s-2$. Method 2 discusses the construction of Partially Efficiency Balanced Design without repeated blocks by reinforcing some treatments in BIBDs of the series $v_{1}=b_{1}=s, r_{1}=k_{1}=s-1, \lambda_{1}=s-2$ where s is any positive integer (≥ 3). The methods are illustrated with suitable example.

Copyright@2017 Rajarathinam, A et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Block designs are widely used in many fields of research. A wide range of Balanced Incomplete Block Design (BIBD) and Partially Balanced Incomplete Block Design (PBIBD) are available in literature. However, these are restricted to equi-replicate and equi-block sizes. A new class of incomplete block designs, termed as partially efficiency-balanced (PEB) design, was introduced by Puri and Nigam, 1975. These designs can be made available in varying replications and unequal block sizes.

In many comparative experiments, sometimes there may be a treatment (or the treatments), usually the control, which may be logically at a different position from the rest of the treatments. For instance, in plant breeding trials, generally limited material is available for the new strains as compared to standard (or check) varieties. Reinforced (Das, 1958), augmented (Federer, 1961) supplemented balanced (Pearce, 1960), nearly balanced (Nigam, 1976) and orthogonally supplemented balanced (Calinski, 1971) designs were all developed for such experimentation. The basic approach in all such designs is to augment (supplement) any standard (generally the randomised block or balanced incomplete block) design with a set of new treatments.

A block design $D(v, b, \underline{k}, \underline{r})$ is said to be efficiency-balanced (EB) design (Puri and Nigam,1975) if for all treatment contrasts $s^{\prime} T$
$M_{0} s=\mu s$,
where μ is the unique non-zero eigen value of M_{0} with multiplicity $(v-1)$ where
$M_{0}=r^{-\delta} P-1 r^{\prime} / N$
and
$P=n k^{-\delta} n^{\prime}$.
As a generation to EB designs, (Puri and Nigam, 1977) defined an m - efficiency class PEB design as follows.
A block design $D(v, b, \underline{k}, \underline{r})$ is said to be a PEB design with m - efficiency class if

[^0]there a set of $(v-1)$ linearly independent contrasts $\left\{\mathrm{s}_{i j}\right\}$ which can be partitioned into $\mathrm{m}(\leq \mathrm{v}-1)$ disjoint classes such that all the ρ_{i} contrasts of $\mathrm{i}^{\text {th }}$ class are estimated with the same relative loss of information μ_{i}, i.e., they satisfy the equation
$M_{0} s_{i j}=\mu_{i} s_{i j}, i=1,2, \ldots, m ; \quad j=1,2, \ldots, \rho_{i}$
So that the efficiency factor associated with every contrast of the i-th class is $\left(1-\mu_{i}\right)$, where μ_{i} are the eigen value of M_{0} with multiplicities $\rho_{i}\left(\sum \rho_{i}=v-1\right)$.Here $M_{0}=M-(1 / n) \underline{1} \underline{r}^{\prime}, M=R^{-1} P, \quad P=N K^{-1} N^{\prime}$
where $R=\operatorname{diag}\left\{r_{1}, r_{2}, \ldots, r_{v}\right\}$ and $K=\operatorname{diag}\left\{k_{1}, k_{2}, \ldots, k_{b}\right\}$ are diagonal matrices with diagonal elements as usual replication vector $\underline{r}=\left(r_{1}, r_{2}, \ldots, r_{v}\right)^{\prime}$, and as the vector $\underline{k}=\left(k_{1}, k_{2}, \ldots, k_{b}\right)^{\prime}$ of block sizes, respectively, and n denotes the total number of experimental units with $\underline{1}$ being a column vector of unity of an appropriate size.

In particular, if $\mu_{i}=\mu$ for all i, the design is called an EB design which was discussed by Calinski, 1971, Puri and Nigam,1975, Williams, 1975 and so on. Most works on PEB designs in the literature have been devoted to discussion of the construction and analysis of the designs. Various properties of parameters of PEB designs have been studied by Kageyama and Puri, 1985.

In this paper two new methods have been proposed for the construction of Partially Efficiency Balanced Designs with and without repeated blocks. Method 1 discusses the construction of Partially Efficiency Balanced Design with repeated blocks by reinforcing some treatments in two BIBDs of the series $v_{1}=b_{1}=s, r_{1}=k_{1}=s-1, \lambda_{1}=s-2$ and $v_{2}=b_{2}=s+1, r_{2}=k_{2}=s$, $\lambda_{2}=s-2$

Method 2 discusses the construction of Partially Efficiency Balanced Design without repeated blocks by reinforcing some treatments in BIBDs of the series $v_{1}=b_{1}=s, r_{1}=k_{1}=s-1, \lambda_{1}=s-2$ where s is any positive integer (≥ 3). The methods are illustrated with suitable example.

METHODS OF CONSTRUCTION

The following theorem deals with the method of constructing PEB design with repeated blocks using the incidence matrices of two BIBD of the series $v_{1}=b_{1}=s, r_{1}=k_{1}=s-1, \lambda_{1}=s-2$ and $v_{2}=b_{2}=s+1, r_{2}=k_{2}=s, \lambda_{2}=s-2$.

Theorem 1

Consider a BIBD design D_{1} with the parameters $v_{1}=b_{1}=s, r_{1}=k_{1}=s-1, \lambda_{1}=s-2$. Again consider another BIBD design D_{2} with parameters $v_{2}=b_{2}=s+1, r_{2}=k_{2}=s, \lambda_{2}=s-2$, where s is any positive integer (≥ 3). Now define an incidence matrix N as

$$
\text { Repeated } s-2 \text { times }
$$

$$
N=\left[\begin{array}{c:c}
N_{1_{\left(11 \times b_{1}\right)}} \tag{1}\\
O_{1_{\left(1 \times b_{1}\right)}} & \overbrace{I_{\left(v_{2} \times b_{2}\right)}} \\
I_{\text {Repeated } s-2 \text { times }} & \underbrace{}_{v_{\left(1 \times b_{1}\right)} \cdots I_{v_{1}}} \\
\underbrace{}_{\left(1 \times b_{1}\right)}
\end{array}\right]_{\left(v_{1}+1\right) \times\left(b_{1}+b_{2}+s(s-2)\right) v}
$$

where $I_{v_{1}}$ is the unit matrix repeated $(s-2)$ times. Here N_{1} and N_{2} are the incidence matrices of the designs D_{1} and D_{2} respectively; $1_{1 \times b 1}$ is the unit vector of order $\left(1 \times b_{1}\right) ; O_{1 \times b_{1}}$ is the null vector. Then the design with the incidence matrix N gives unequally replicated partially efficiency balanced block design with the following parameters.
$v=v_{1}+1 ; b=b_{1}+b_{2}+s(s-2) ;$
$\underline{r}=\left(r_{1}^{*}, r_{2}^{*}\right)$, where $r_{1}^{*}=\left(r_{1}+r_{2}+s-2\right)$ and $r_{2}^{*}=\left(r_{2}+s(s-2)\right)$
$\underline{k}=\left(k_{1} \underline{1}_{b_{1}}^{\prime}, k_{2} \underline{1}_{b_{2}}^{\prime}, 2 \underline{1}_{s(s-2)}^{\prime}\right) ; \lambda=\lambda_{1}+\lambda_{2}$

Proof

The incidence matrix defined in (1) consists of $v_{1}+1$ row. Considering these rows as treatments, obviously, the numbers of treatments are $v=v_{1}+1$. Also it is obvious that, since the design D_{1} has b_{1} blocks, the design D_{2} has b_{2} blocks and the identity
matrices of orders s which are repeated $(s-2)$ times and hence $b_{1}+b_{2}+s(s-2)$ columns. By considering these columns as the blocks, the numbers of blocks are $b=b_{1}+b_{2}+s(s-2)$.

In the incidence matrix (1) out of $v_{1}+1$ rows up to v_{1} rows in design D_{1} each treatments occurs r_{1} times, in D_{2} it occurs r_{2} times and identity matrix is repeated $(s-2)$ times and hence the number of replication is $r_{1}^{*}=\left(r_{1}+r_{2}+s-2\right)$. Again in the last row a treatment in D_{2} occurs r_{2} times and 1 occurs $s(s-2)$ times and hence numbers of replications for $\left(v_{1}+1\right)^{\text {th }}$ treatment is $r_{2}^{*}=\left(r_{2}+s(s-2)\right)$

Design D_{1} has k_{1} blocks and D_{2} has k_{2} blocks, so block sizes up to b_{1} and b_{2} blocks are k_{1} and k_{2} respectively. However for the remaining blocks, block size is two. Hence the block size of the design D is $\underline{k}=\left(k_{1} \underline{1}_{b_{1}}^{\prime}, k_{2} \underline{1}_{b_{2}}^{\prime}, 2 \underline{1}_{s(s-2)}^{\prime}\right)$
Let us consider the matrix M_{0} given by Calinski, 1971
$M_{0}=R^{-1} N K^{-1} N^{\prime}-\frac{1}{n} 1_{v} r^{\prime}$,
where n is the number of experimental units and $n=\sum_{i=1}^{v} r_{i}=\sum_{j=1}^{b} k_{j}$
For the incidence matrix given in equation (1) the value of M_{0} is computed as
$M_{0}=\frac{1}{\left(12 s(s-1)^{2}\right)}\left[\begin{array}{ccccccc}\alpha & -\beta & -\beta & -\beta & \ldots & -\beta & -\gamma \\ -\beta & \alpha & -\beta & -\beta & \ldots & -\beta & -\gamma \\ -\beta & -\beta & \alpha & -\beta & \ldots & -\beta & -\gamma \\ -\beta & -\beta & -\beta & \alpha & \ldots & -\beta & -\gamma \\ : & : & : & : & \cdots & : & : \\ -\beta & -\beta & -\beta & -\beta & \ldots & \alpha & -\gamma \\ -\delta & -\delta & -\delta & -\delta & \ldots & -\delta & \zeta\end{array}\right]_{(v \times \mathrm{v})}$
where $\alpha=(s-1)\left(2 s^{2}-5 s+9\right) ; \beta=\left(s^{2}-2 s+5\right) \gamma=(s-1)\left(s^{2}-3 s+4\right)$;

$$
\delta=(3 / s)(s-1)\left(s^{2}-3 s+4\right) ; \zeta=3(s-1)\left(s^{2}-3 s+4\right)
$$

$M_{0}=\frac{1}{12 s(s-1)^{2}}\left[\begin{array}{cc}\left\{(\alpha+\beta) I_{(v-1)}-\beta E_{(v x v)}\right\} & -\gamma \\ -\delta 1_{v-1}^{\prime} & \zeta\end{array}\right]$
M_{0} Matrix has two distinct non-zero eigen values which are
$\theta_{1}=\frac{s\left(s^{2}-3 s+6\right)-2}{6 s(s-1)^{2}}$ with multiplicity $(v-2)$ and
and $\quad \theta_{2}=\frac{\left(s^{2}-3 s+4\right)}{3 s(s-1)}$ with multiplicity 1
Hence the incidence matrix given in (1) gives the partially efficiency balanced block design with efficiency factors $E=1-\mu_{1}=\frac{s^{2}(5 s-9)+2}{6 s(s-1)^{2}}$ with multiplicity $(v-2)$ and $E_{2}=1-\mu_{2}=\frac{2\left(s^{2}-2\right)}{3 s(s-1)}$ with multiplicity 1. In this design $\mathrm{s}-$ blocks are repeated once.

Numerical Illustrations 1

For $s=4$, let us consider two BIBDs D_{1} with the parameters $v_{1}=b_{1}=4 ; r_{1}=k_{1}=3 ; \lambda_{1}=2$ and D_{2} with the parameters $v_{2}=b_{2}=5 ; r_{2}=k_{2}=4 ; \lambda_{2}=3$. Then the following incidence matrix N gives the PEB block design with the parameters
$v=5, b=17, \underline{r}=\left(9 \underline{1}_{4}^{\prime}, 12\right), \underline{k}=\left(3 \underline{1}_{4}^{\prime}, 4 \underline{1}_{5}^{\prime}, 2 \underline{1}_{8}^{\prime}\right)$ and $\lambda=\lambda_{1}+\lambda_{2}=5$
$N=\left[\begin{array}{lllllllllllllllll}1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
The $P=N K^{-1} N$ ' matrix is computed as
$\left[\begin{array}{ccccc}3 & 17 / 12 & 17 / 12 & 17 / 12 & 7 / 4 \\ 17 / 12 & 3 & 17 / 12 & 17 / 12 & 7 / 4 \\ 17 / 12 & 17 / 12 & 3 & 17 / 12 & 7 / 4 \\ 17 / 12 & 17 / 12 & 17 / 12 & 3 & 7 / 4 \\ 7 / 4 & 7 / 4 & 7 / 4 & 7 / 4 & 5\end{array}\right]$

The $M_{01}=R^{-1} N K^{-1} N^{\prime}$ matrix is computed as
$\left[\begin{array}{ccccc}1 / 3 & 17 / 108 & 17 / 108 & 17 / 108 & 7 / 36 \\ 17 / 108 & 1 / 3 & 17 / 108 & 17 / 108 & 7 / 36 \\ 17 / 108 & 17 / 108 & 1 / 3 & 17 / 108 & 7 / 36 \\ 17 / 108 & 17 / 108 & 17 / 108 & 1 / 3 & 7 / 36 \\ 7 / 48 & 7 / 48 & 7 / 48 & 7 / 48 & 5 / 12\end{array}\right]$

The computed $M_{02}=\frac{1}{n} 1_{v} r^{\prime}$ matrix is
$\left[\begin{array}{lllll}3 / 16 & 3 / 16 & 3 / 16 & 3 / 16 & 1 / 4 \\ 3 / 16 & 3 / 16 & 3 / 16 & 3 / 16 & 1 / 4 \\ 3 / 16 & 3 / 16 & 3 / 16 & 3 / 16 & 1 / 4 \\ 3 / 16 & 3 / 16 & 3 / 16 & 3 / 16 & 1 / 4 \\ 3 / 16 & 3 / 16 & 3 / 16 & 3 / 16 & 1 / 4\end{array}\right]$

Finally the computed $M_{0}=R^{-1} N K^{-1} N^{\prime}-\frac{1}{n} 1_{v} r^{\prime}$, matrix is
$\left[\begin{array}{ccccc}7 / 48 & -13 / 432 & -13 / 432 & -13 / 432 & -1 / 18 \\ -13 / 432 & 7 / 48 & -13 / 432 & -13 / 432 & -1 / 18 \\ -13 / 432 & -13 / 432 & 7 / 48 & -13 / 432 & -1 / 18 \\ -13 / 432 & -13 / 432 & -13 / 432 & 7 / 48 & -1 / 18 \\ -1 / 24 & -1 / 24 & -1 / 24 & -1 / 24 & 1 / 6\end{array}\right]$
The eigen values of the above matrix are
$\theta=(0$
2/9 19/108
19/108 19/108)

The non-zero eigen values of the above matrix M_{0} of the design D is $\theta_{1}=\frac{19}{108}=0.1759$ with multiplicity $3(=v-2)$ and $\theta_{2}=\frac{2}{9}=0.2222$ with multiplicity 1.
So the design is PEB with efficiency factors

1. $\mathrm{E}_{1}=1-\mu_{1}=1-0.1759=0.8241$ with multiplicity $v-2=3$ and
2. $\mathrm{E}_{2}=1-\mu_{2}=1-0.2222=0.7778$ with multiplicity 1

In this design s-blocks are repeated once.

Theorem 2

Consider a BIBD design D_{1} with the parameters $v_{1}=b_{1}=s, r_{1}=k_{1}=s-1, \lambda_{1}=s-2$ where s is any positive integer (≥ 3). Now consider the incidence matrix N defined as
$N=\left[\begin{array}{cccc}\left(\mathrm{N}_{1}\right)_{v_{1} \times b_{1}} & E_{v_{1} \times 2} & I_{v_{1}} & I_{v_{1}} \\ 1_{1 \times b_{1}} & 0_{1 \times 2} & 1_{1 \times b_{1}} & 0_{1 \times b_{1}} \\ 1_{1 \times b_{1}} & 0_{1 \times 2} & 0_{1 \times b_{1}} & 1_{1 \times b_{1}}\end{array}\right]$
gives the un-replicated partially efficiency balanced design with $\left(v_{1}+2\right)$ treatments.
Here N_{1} is the incidence matrix of the BIBD design D_{1}; E is the matrix of order $\left(v_{1}+2\right)$ whose all elements are one; $1_{1 \times b_{1}}$ is the unit vector of order $\left(1 \times b_{1}\right) ; 0_{1 \times b_{1}}$ is the null vector.

Then the design with the incidence matrix N gives the unequally replicated PEB block design with repeated blocks having the following parameters:
$v=\left(v_{1}+2\right) ; b=3 b_{1}+2 ; \underline{r}=\left(\left(r_{1}+4\right) \underline{1}_{v_{1}}^{\prime}, 2 b_{1} \underline{1_{2}^{\prime}}\right) ; \underline{k}=\left(\left(k_{1}+2\right) \underline{1}_{b_{1}}^{\prime}, v_{1} \underline{1}_{2}^{\prime}, 2 \underline{1}_{2 v_{1}}^{\prime}\right)$

Proof

The incidence matrix defined in equation (2) consists of $\left(v_{1}+2\right)$ rows and considering these as treatments obviously the numbers of treatments are $v=\left(v_{1}+2\right)$. Also it is obvious that, the above incidence matrix consists of $b_{1}+2\left(v_{1}+1\right)$ columns and considering these as the blocks the number of blocks are $b=b_{1}+2\left(v_{1}+1\right)$ or $b=b_{1}+2\left(b_{1}+1\right)=3 b_{1}+2$. So the order of the N matrix is $(\mathrm{s}+2) \mathrm{x}(\mathrm{s}+2)$.
In the above incidence matrix out of $\left(v_{1}+2\right)$ rows; in v_{1} rows 1 occurs $\left(r_{1}+4\right)$ times and in the remaining two rows 1 occurs $2 b_{1}$ times and hence the number of replications is
$\underline{r}=\left(r_{1}^{*} \underline{\underline{v}}_{v_{1}}^{\prime}, r_{2}^{*} \underline{\underline{1}_{2}^{\prime}}\right)$ where $\mathrm{r}_{1}^{*}=r_{1}+4$ and $\mathrm{r}_{2}^{*}=2 b_{1}$
Also in the above incidence matrix, out of $b_{1}+2\left(v_{1}+1\right)$ columns, in b_{1} columns 1 appears $k_{1}+2$ times; in two columns 1 appears v_{1} times and in $2 v_{1}$ columns 1 appears two times. Hence the block size is $\underline{k}=\left(\left(k_{1}+2\right) \underline{1}_{b_{1}}^{\prime}, v_{1} \underline{1}_{2}^{\prime}, 2 \underline{1}_{2 v_{1}}^{\prime}\right) ; v=s+2 ; b=3 s+2$

The $P=N K^{-1} N^{\prime}$ matrix is computed as

$$
\left[\begin{array}{cccccc}
\frac{2\left(s^{2}+s+1\right)}{s(s+1)} & \frac{s^{2}+2}{s(s+1)} & \cdots & \frac{s^{2}+2}{s(s+1)} & \frac{s(3 s-1)}{(s+1)(s+3)} & \frac{s(3 s-1)}{(s+1)(s+3)} \\
\frac{s^{2}+2}{s(s+1)} & \frac{2\left(s^{2}+s+1\right)}{s(s+1)} & \cdots & \frac{s^{2}+2}{s(s+1)} & \frac{s(3 s-1)}{(s+1)(s+3)} & \frac{s(3 s-1)}{(s+1)(s+3)} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\frac{s^{2}+2}{s(s+1)} & \frac{s^{2}+2}{s(s+1)} & \cdots & \frac{2\left(s^{2}+s+1\right)}{s(s+1)} & \frac{s(3 s-1)}{(s+1)(s+3)} & \frac{s(3 s-1)}{(s+1)(s+3)} \\
\frac{(3 s-1)(s+3)}{4 s(s+1)} & \frac{(3 s-1)(s+3)}{4 s(s+1)} & \cdots & \frac{(3 s-1)(s+3)}{4 s(s+1)} & \frac{s^{2}+3 s}{2(s+1)} & \frac{s}{(s+1)} \\
\frac{(3 s-1)(s+3)}{4 s(s+1)} & \frac{(3 s-1)(s+3)}{4 s(s+1)} & \cdots & \frac{(3 s-1)(s+3)}{4 s(s+1)} & \frac{s}{(s+1)} & \frac{s^{2}+3 s}{2(s+1)}
\end{array}\right]
$$

The order of the above matrix is $(\mathrm{s}+2) \mathrm{x}(\mathrm{s}+2)$
The computed $M_{01}=R^{-1} N K^{-1} N^{\prime}$ matrix is
$\left[\begin{array}{cccccc}\frac{2\left(s^{2}+s+1\right)}{s(s+1)(s+3)} & \frac{s^{2}+2}{s(s+1)(s+3)} & \cdots & \frac{s^{2}+2}{s(s+1)(s+3)} & \frac{s(3 s-1)}{(s+1)(s+3)} & \frac{s(3 s-1)}{(s+1)(s+3)} \\ \frac{s^{2}+2}{s(s+1)(s+3)} & \frac{2\left(s^{2}+s+1\right)}{s(s+1)(s+3)} & \cdots & \frac{s^{2}+2}{s(s+1)(s+3)} & \frac{s(3 s-1)}{(s+1)(s+3)} & \frac{s(3 s-1)}{(s+1)(s+3)} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \frac{s^{2}+2}{s(s+1)(s+3)} & \frac{s^{2}+2}{s(s+1)(s+3)} & \cdots & \frac{2\left(s^{2}+s+1\right)}{s(s+1)(s+3)} & \frac{s(3 s-1)}{(s+1)(s+3)} & \frac{s(3 s-1)}{(s+1)(s+3)} \\ \frac{(3 s-1)}{4 s(s+1)} & \frac{(3 s-1)}{4 s(s+1)} & \cdots & \frac{(3 s-1)}{4 s(s+1)} & \frac{s^{2}+3 s}{4 s(s+1)} & \frac{s}{(s+1)} \\ \frac{(3 s-1)}{4 s(s+1)} & \frac{(3 s-1)}{4 s(s+1)} & \cdots & \frac{(3 s-1)}{4 s(s+1)} & \frac{s}{(s+1)} & \frac{s^{2}+3 s}{4 s(s+1)}\end{array}\right]$

The order of the above matrix is $(s+2) x(s+2)$
The computed $M_{02}=\frac{1}{2} I_{v} r^{\prime}$ matrix is
$\frac{1}{s^{2}+7 s}\left[\begin{array}{cccccc}s+3 & s+3 & \cdots & s+3 & 2 s & 2 s \\ s+3 & s+3 & \cdots & s+3 & 2 s & 2 s \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ s+3 & s+3 & \cdots & s+3 & 2 s & 2 s\end{array}\right]$
Finally the computed $M_{0}=R^{-1} N K^{-1} N^{\prime}-\frac{1}{n} 1_{v} r^{\prime}$, matrix is

$$
\left[\begin{array}{cccccc}
\alpha & -\beta & \cdots & -\beta & -\gamma & -\gamma \\
-\beta & \alpha & \cdots & -\beta & -\gamma & -\gamma \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-\beta & -\beta & \cdots & \alpha & -\gamma & -\gamma \\
-\delta & -\delta & \cdots & -\delta & \alpha_{1} & -\beta_{1} \\
-\delta & -\delta & \cdots & -\delta & -\beta_{1} & \alpha_{1}
\end{array}\right]
$$

where
$\alpha=\frac{s^{3}+9 s^{2}+s+5}{(s+1)(s+3)\left(s^{2}+7 s\right)}, \beta=\frac{13 s-5}{(s+1)(s+3)\left(s^{2}+7 s\right)}, \gamma=\frac{\left(s^{2}-4 s+19\right)}{2(s+1)(s+3)(s+7)}$

$$
\delta=\frac{\left(s^{2}-4 s+19\right)}{4(s+1)\left(s^{2}+7 s\right)}, \quad \alpha_{1}=\frac{s^{2}+2 s+13}{4(s+1)(s+7)}, \quad \beta_{1}=\frac{3 s(s-1)}{2(s+1)\left(s^{2}+7 s\right)}
$$

The non-zero eigen value of the above matrix is as follows

$$
\theta=\left[\begin{array}{lllll}
0 & \underbrace{\theta_{1}}_{(v-s)} \cdots \cdots & \theta_{\text {times }}
\end{array} \quad \theta_{2} \quad \theta_{3}\right]
$$

where
$\theta_{1}=\alpha+\beta=\frac{\left(s^{3}+9 s^{2}+14 s\right)}{(s+1)(s+3) s(s+7)}$ with multiplicity (v-s)
$\theta_{2}=\alpha_{1}-\beta_{1}+2 \gamma=\frac{\left(s^{3}+3 s^{2}-9 s+133\right)}{4(s+1)(s+3)(s+7)}$ with multiplicity 1
$\theta_{3}=\alpha_{1}+\beta_{1}=\frac{\left(s^{2}+8 s+7\right)}{4(s+1)(s+7)}$ with multiplicity 1
Hence the incidence matrix given in (2) gives the partially efficiency balanced design with efficiency factors $E_{1}=1-\mu_{1}=\frac{s^{3}+10 s^{2}+22 s+7}{(s+1)(s+3)(s+7)}$ with multiplicity $(v-2) ; E_{2}=1-\mu_{2}=\frac{3 s^{3}+14 s^{2}+133 s-49}{4(s+1)(s+3)(s+7)}$ with multiplicity 1 and $E_{3}=1-\mu_{3}=\frac{3 s^{2}+24 s+21}{4(s+1)(s+7)}$ with multiplicity 1 .

Numerical illustration 2

For $\mathrm{s}=4$, let us consider a BIBD with $v_{1}=b_{1}=s=4, r_{1}=k_{1}=s-1=3$ and $\lambda_{1}=s-2=4-2=2$, then the incidence matrix N as per the theorem 2 gives PEB block design with the following parameters $\mathrm{v}=\mathrm{s}+2=4+2=6 ; \mathrm{b}=3 \mathrm{~s}+2=14 ; \underline{r}=\left(7 \underline{1}_{4}, 8 \underline{1}_{2}\right)$ and $\underline{k}=\left(5 \underline{1}_{4}, 4 \underline{1}_{2}, 2 \underline{1}_{8}\right)$.

Here obviously $\mathrm{v}=\mathrm{s}+2=4+2=6, \mathrm{~b}=14, \underline{r}=\left(7 \underline{1}_{4}, 8 \underline{1}_{2}^{\prime}\right)$ and $\underline{k}=\left(5 \underline{1}_{4}, 4 \underline{1}_{2}, 2 \underline{1}_{8}\right)$.
The $P=N K^{-1} N^{\prime}$ matrix is computed as
$\left[\begin{array}{cccc:cc}\frac{21}{10} & \frac{9}{10} & \frac{9}{10} & \frac{9}{10} & \frac{11}{10} & \frac{11}{10} \\ \frac{9}{10} & \frac{21}{10} & \frac{9}{10} & \frac{9}{10} & \frac{11}{10} & \frac{11}{10} \\ \frac{9}{10} & \frac{9}{10} & \frac{21}{10} & \frac{9}{10} & \frac{11}{10} & \frac{11}{10} \\ \frac{9}{10} & \frac{9}{10} & \frac{9}{10} & \frac{21}{10} & \frac{11}{10} & \frac{11}{10} \\ \hdashline \frac{11}{10} & \frac{11}{10} & \frac{11}{10} & \frac{11}{10} & \frac{14}{5} & \frac{4}{5} \\ \frac{11}{10} & \frac{11}{10} & \frac{11}{10} & \frac{11}{10} & \frac{4}{5} & \frac{14}{5}\end{array}\right\}_{6 \times 6}$

The $M_{01}=R^{-1} N K^{-1} N^{\prime}$ matrix is computed as
$\left[\begin{array}{cccc:cc}\frac{3}{10} & \frac{9}{70} & \frac{9}{70} & \frac{9}{70} & -\frac{19}{770} & -\frac{19}{770} \\ \frac{9}{70} & \frac{3}{10} & \frac{9}{70} & \frac{9}{70} & -\frac{19}{770} & -\frac{19}{770} \\ \frac{9}{70} & \frac{9}{70} & \frac{3}{10} & \frac{9}{70} & -\frac{19}{770} & -\frac{19}{770} \\ \frac{9}{70} & \frac{9}{70} & \frac{9}{70} & \frac{3}{10} & -\frac{19}{770} & -\frac{19}{770} \\ \hdashline \frac{11}{80} & \frac{11}{80} & \frac{11}{80} & \frac{11}{80} & \frac{7}{20} & \frac{1}{10} \\ \frac{11}{80} & \frac{11}{80} & \frac{11}{80} & \frac{11}{80} & \frac{1}{10} & \frac{7}{20}\end{array}\right]_{6 \times 6}$

The $M_{02}=\frac{1}{n} 1_{v} r^{\prime}$ matrix is computed as
$\left[\begin{array}{cccccc}\frac{7}{44} & \frac{7}{44} & \frac{7}{44} & \frac{7}{44} & \frac{2}{11} & \frac{2}{11} \\ \frac{7}{44} & \frac{7}{44} & \frac{7}{44} & \frac{7}{44} & \frac{2}{11} & \frac{2}{11} \\ \frac{7}{44} & \frac{7}{44} & \frac{7}{44} & \frac{7}{44} & \frac{2}{11} & \frac{2}{11} \\ \frac{7}{7} & \frac{7}{44} & \frac{7}{44} & \frac{7}{44} & \frac{2}{11} & \frac{2}{11} \\ \frac{7}{44} & \frac{7}{44} & \frac{7}{44} & \frac{7}{44} & \frac{2}{11} & \frac{2}{11} \\ \frac{44}{4} & \frac{7}{44} & \frac{7}{7} & \frac{7}{44} & \frac{2}{11} & \frac{2}{11}\end{array}\right]_{(6 \times 6)}$

Finally the computed $M_{0}=R^{-1} N K^{-1} N^{\prime}-\frac{1}{n} 1_{v} r^{\prime}$, matrix is

$$
\left[\begin{array}{cccc:cc}
\frac{31}{220} & -\frac{17}{557} & -\frac{17}{557} & -\frac{17}{557} & -\frac{19}{770} & -\frac{19}{770} \\
\hdashline \frac{17}{557} & \frac{31}{220} & -\frac{17}{557} & -\frac{17}{557} & -\frac{19}{770} & -\frac{19}{770} \\
-\frac{17}{557} & -\frac{17}{557} & \frac{31}{220} & -\frac{17}{557} & -\frac{19}{770} & -\frac{19}{770} \\
-\frac{17}{557} & -\frac{17}{557} & -\frac{17}{557} & \frac{31}{220} & -\frac{19}{770} & -\frac{19}{770} \\
\hdashline-\frac{19}{880} & -\frac{19}{880} & -\frac{19}{880} & -\frac{19}{880} & \frac{37}{220} & -\frac{9}{110} \\
-\frac{19}{880} & -\frac{19}{880} & -\frac{19}{880} & -\frac{19}{880} & -\frac{9}{110} & \frac{37}{220}
\end{array}\right]_{6 \times 6}
$$

The eigen values of the above M_{0} matrix has three distinct non-zero eigen values

$$
\theta=\left[\begin{array}{llllll}
0 & \frac{60}{35} & \frac{60}{35} & \frac{60}{35} & \frac{19}{140} & \frac{1}{4}
\end{array}\right]
$$

The non-zero eigen values of the above matrix M_{0} of the design D is $\theta_{1}=\frac{60}{35}$ with multiplicity $3(=\mathrm{v}-\mathrm{s}+1)$; $\theta_{2}=\frac{19}{140}$ with multiplicity 1 and $\theta_{3}=\frac{1}{4}$ with multiplicity 1. So the design is PEB with efficiency factors

1. $\mathrm{E}_{1}=1-\mu_{1}=1-0.1714=0.8286$ with multiplicities 3
2. $\mathrm{E}_{2}=1-\mu_{2}=1-0.1357=0.8643$ with multiplicity 1
3. $\mathrm{E}_{3}=1-\mu_{3}=1-0.2500=0.7500$ with multiplicity 1

Applications

Balanced incomplete block designs and partially incomplete block designs are not available for all the parameters because of its parametric relations. Similarly, variance balanced designs are not possible for the required parameters. In such situation, efficiency balanced designs are very much useful. In agricultural plant breeding trails as the numbers of treatments are increased, it is not possible to maintain the homogeneity within the block and some treatment groups effects are estimated with different efficiency factor, in such a situations partially efficiency designs are very much useful and desirable one.

References

Calinski, T. (1971). On some desirable patterns in block designs (with discussion), Biometrics, 27: 275-292.
Das,M.N., (1958). On re-inforced incomplete block designs. Jour.Ind. Soc. Agri. Stat., 10: 73-77.
Federer, W.T., (1961). Augmented designs with one-way elimination of heterogeneity, Biometrics, 47: 263-271.
Kageyama, S and Puri, P.D. (1985). Properties of partially efficiency balanced designs. Bull. Inform. Cyber. (formerly Bull. Math. Statist.), 21: 19-28.
Nigam, A.K. (1976). Nearly balanced incomplete block designs. Sankhya, 38, B: 195-198.
Pearce, S.C. (1960). Supplemented Balance. Biometrics, 47: 263-271.
Puri, P.D. and Nigam, A.K. (1975). On patterns of efficiency balanced designs. Jour. Roy. Stat. Soc. B., 37: 457-458.
Puri, P.D. and Nigam, A.K., (1977). Partially efficiency balanced designs, Commun.Statist. Theor-Math., A 6: 753-771.
Williams, E.R. (1975). Efficiency balanced designs. Biometrika, 62: 686-688.

How to cite this article:

Rajarathinam, A et al (2017) 'Construction Of Partially Efficiency Balanced Block Designs With And Without Repeated Blocks', International Journal of Current Advanced Research, 06(06), pp. 4463-4471.
DOI: http://dx.doi.org/10.24327/ijcar.2017.4471.0520

[^0]: *Corresponding author: Rajarathinam, A
 Department of Statistics, Manonmaniam Sundaranar
 University, Tirunelveli-627012, Tamil Nadu, India

