

INTERNATIONAL JOURNAL OF CURRENT ADVANCED RESEARCH

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614 Available Online at www.journalijcar.org Volume 12; Issue 08(A); August 2023; Page No. 2491-2497 DOI: http://dx.doi.org/10.24327/ijcar.2023.2497.1546

Research Article

A STUDY ON THE AVAILABLE FACILITIES AND WORKLOAD IN A RADIOTHERAPY DEPARTMENT AT A TERTIARY CARE TEACHING HOSPITAL IN NORTH INDIA

Meenakshi Koul¹, Mukul Gupta^{*2}, Yatoo G.H³ and Samina Mufti⁴

^{1,3,4}Department of Hospital Administration SKIMS Srinagar ²Department of Hospital Administration GMC Udhampur

A R T I C L E I N F O

Article History: Received 06th May, 2023 Received in revised form 14th June, 2023 Accepted 23rd July, 2023 Published online 28th August, 2023

Key words:

Radiotherapy, physical facilities, workload, simulator, equipments.

ABSTRACT

Background: Effective radiotherapy delivery relies on the synergy of optimized physical facilities and efficient workload management within a radiotherapy department. Through comprehensive assessments of spatial layout, equipment availability, and patient flow, we elucidate the impact of physical facilities and workload on treatment efficacy. Materials and Methods: A prospective observational study conducted for one year from January 1st 2021 to 31st December 2021, supplemented by review of records and interview of concerned personnel was conducted in the Department of Radiation Oncology. A checklist predesigned with references from International Atomic Energy Agency was used to study the various physical facilities and workload of each equipment i.e. Linear Accelerator, Theratron780E, Bhabhatron II TAW and CT Simulator in the Department of Radiation Oncology. A pilot study of fifteen (15) days was conducted to validate the tool. The data was collected as per predesigned checklist and was subjected to systematic analysis. The frequencies and percentages were calculated and represented graphically in the form of tables, bar diagrams. Results: the study observed that the department of radiotherapy had adequate facilities for providing various modalities of treatment and that there is a huge workload on all the equipment in the department. Conclusion: Utilizing a combination of quantitative metrics and qualitative observations, this research unveils the pivotal role of well-designed treatment rooms, advanced technology integration, and patient-centric spaces in enhancing treatment precision. As the radiotherapy landscape continues to evolve, this study contributes to the ongoing pursuit of excellence in cancer care by addressing the intricate relationship between physical infrastructure and efficient workload management within a radiotherapy department.

Copyright[©] The author(s) 2023. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Cancer is an increasing health problem in India and worldwide. Cancer treatment is done by multi-disciplinary approach that includes collaboration between surgical oncologist, medical oncologist, radiation oncologist and hospital administrator. Radiotherapy (RT) or radiation oncology is an essential component for cure and palliation of cancer. The aim of radiation oncology department should be to provide compassionate, state of art, innovative high quality radiation treatment to cancer patients in the safest possible manner. In addition to certain physical facilities as per the laid down guidelines, the radiation therapy department in any wellestablished modern hospital should have at least two treatment modalities: a cobalt unit and a linear accelerator. Cobalt unit is used for deep radiation therapy and linear accelerator uses a recent technology to treat a wide range of cases ^[1]. Certain basic physical facilities like adequate space for each type of work, tactical housing and location of various facilities in such a manner as to regulate the patient traffic can enhance the

*Corresponding author: Mukul Gupta Department of Hospital Administration GMC Udhampur proficiency of service [2]. Radiotherapy unit should include facilities such as radiotherapist room, physician's room, laboratory, mould room, simulator and treatment planning system^[3].

Location

Radiotherapy departments are usually located on the periphery of the hospital complex to avoid radiation protection problems arising from therapy rooms being adjacent to high occupancy areas Proximity to adjunct facilities, ready access for inpatients and outpatients, and consolidation of all therapeutic radiological services is important.^[4]

Physical facilities

- **Parking:** There should be adequate parking for patients and their families including a sufficient number of handicapped designated spaces.
- Accessibility: The facility should be accessible to patients including those with handicaps or disabilities.

- Waiting area(s): There should be a comfortable waiting area sufficient for the needs of patients and their families. There should be two waiting rooms, one for male and one for females. The size about 100-150 sq. feet with toilet facility ^[5].
- **Reception/business areas:** There should be sufficient space for a reception area, record storage and business functions of the practice.
- **Restrooms:** There should be a sufficient number of restrooms for patients, their families and the staff including access for handicapped and disabled individuals.
- **Examination Rooms:** There should be adequate examination rooms for patient care and, ideally, an area for examination of stretcher- and wheelchair-bound patients. ^(3,4)
- **Simulation areas:** There should be an area for simulation of patient treatment fields. There may be a separate simulation room or it may be incorporated into other areas in the facility.
- **Treatment planning/physicist/dosimetry areas:** There should be adequate space for Treatment Planning, Physicist and Dosimetry functions performed on site.
- **Megavoltage treatment room(s):** There should be an appropriately shielded area for each megavoltage treatment unit in use. These areas should meet all applicable manufacturer, state and/or federal requirements. Each treatment room should be equipped with door interlocks, radiation monitors, video observation equipment etc.
- **Treatment aide fabrication areas:** There should be areas for fabrication of treatment aides for the practice. These areas may be in separate rooms or incorporated into other areas within the facility. When utilizing potentially hazardous materials appropriate facilities should be available and utilized.
- **Offices:** There should be sufficient office space for physicians, physicists and other supervisory personnel to carry out their functions.
- **Other areas:** In addition to the above areas, the practice facility should have space for storage, a break room (lounge) for staff and space for other needs of the practice.^[4]

MATERIALS AND METHODS

The present study is a prospective and observational study, conducted in the Radiation Oncology Department of the hospital for a period of one year from 1st January 2021 to 31st December 2021.A predesigned checklist with references from International Atomic Energy Agency was used to study the various physical facilities in the Department. For calculating the workload prospective observational study supplemented by review of records was conducted in the Department of Radiation Oncology.Workload of each equipment i.e Linear Accelerator, Cobalt units, and CT Simulator was observed during the study period. The data was collected as per predesigned checklist

RESULTS

Location of the Department

The location of the Department was studied using the standards given in Table 1.

Feature	Standard	Present	Absent
Location	Is the Department at the periphery of hospital	Yes	
	Is there provision of future extension	Yes	
	Is there ready access for in patients and out patients	Yes	
	Is there consolidation of all therapeutic radiological services	Yes	

Table 1 Location of the Department

Access to the Department

The access to the Department was studied using the standards given in Table 2.

Table 2 Access to the Department

Feature	Standard	Present	Absent
Access	Is the entrance to the room through a	Vos	
Access	shielded door or via a maze	165	
	Access to Radiotherapy facilities using		
	radioactive sources and rooms where	Vos	
	sources are used and stored are	res	
	restricted to public		

Mazes

The mazes of the Department were studied using the standards given in Table 3.

 Table 3 Mazes in the Department

Feature	Standard	Present	Absent
Mazes	Is it long and with small cross section	Yes	
	Is there a physical barrier such as		
	normal gate door installed to	V	
	discourage entry to the maze during	res	
	patient treatment		

Door and Interlocks

The doors and interlocks of the Department were studied using the standards given in Table 4.

 Table 4 Door and Interlocks

Feature	Standard	Pres ent	Absent
Doors	Is there a barrier installed at the entrance to		
and	the maze or treatment room to restrict access	Yes	
Interlocks	during exposure		
	Is there a motorized door with manual		NO
	means of opening in event of power failure		NO
	Is there an emergency means by which	Yes	
	motion of the door is stopped		
	Can all the doors, gates, photoelectric beams		
	and motion detectors be interlocked to	Yes	
	treatment unit when there is exposure		

Treatment Control Area

The treatment control area of the Department was studied using the standards given in Table 5.

Table 5 Treatment Control Area

Feature	Standard	Present	Absent
Treatment	Is this area close to the entrance of the	Vos	
Control Area	treatment bunker	res	
	Is control area sufficiently large to		
	accommodate the control console and	Yes	
	associated equipment		
	Are there computer terminals for record		
	verification, electronic portal imaging,		
	Hospital Information System and Dosimetry	Yes	
	equipment as well as Closed Circuit TV		
	monitors for patient observation		
	Is there clear access to any Dosimetry ducts	Yes	

Patient Observation and Communication

The patient observation and communication system of the Department was studied using the standards given in Table 6.

Table 6 Patient Observation and Communication

Feature	Standard	Present	Absent
Patient Observation and Communication	Is the operator able to visually monitor the patient during treatment with closed circuit TV	Yes	
	Are there two cameras as per recommendation	Yes	
	Are they situated at axis for optimum observation of the patient on the treatment couch	Yes	
	Are the cameras located far away from radiation source	Yes	
	Is there provision for two way communication between the treatment control area and the room		No
	Is there a patient activated alarm in case patient is unable to give an audible call		No

Radiation Warning Signs and Lights

The Radiation Warning Signs and Lights in the Department were studied using the standards given in Table 7.

Table 7 Radiation Warning Signs and Lights

Feature	Standard	Present	Absent
Radiation	Are there properly illuminated	Yes	
Warning	signs may have two or three		
Signs and	stages		
Lights			
	Is the controlled area with	Yes	
	restricted access labelled		
	appropriately		
	When set up, for radiotherapy	Yes	
	treatment of a patient are the		
	room lights dimmable		

Room Lighting and Alignment Lasers

The room lighting and alignment lasers in the Department were studied using the standards given in Table 8.

Table 8 Room lighting and alignment lasers

Feature	Standard	Present	Absent
Room	Are they able to control the		
Lighting and	room lights and lasers from the	Vag	
Alignment	treatment unit control pendant	ies	
Lasers	in the treatment bunker		
	Are there incandescent lights to		
	be used for the dim level as per	Yes	
	recommendations		

Security of Radioactive Sources

The security of radioactive sources in the Department was studied using the standards given in Table 9.

Table 9 Security of Radioactive Sources

Feature	Standard	Present	Absent
Security of			
Radioactive	Are there protective doors	Yes	
Sources			
	Are there protective walls	Yes	
	Are there interlocks	Yes	

External Beam Radiotherapy (EBR): Equipment for EBR

The equipment for External Beam Radiotherapy_in the Department were studied using the standards given in Table 10

 Table 10 External Beam Radiotherapy (EBR): Equipment for

 EBR

Feature	Standard	Present	Absent
External Beam Radiotherapy (EBR)Equipment for EBR	Imaging	Yes	
	Treatment planning	Yes	
	Treatment delivery	Yes	
	Quality assurance	Yes	
	Radiation safety	Yes	
	Is it in close proximity to the treatment room	Yes	
	Does it include standard and gynecological examination tables	Yes	
	is there head and neck examination chair		No
	Appropriate examination		
	instruments and medical supplies		No

Simulator room

The facilities of the simulator room in the Department were studied using the standards given in Table 11

Table 11 Simulator room

Feature	Standard	Present	Absent
	Is it large enough to accommodate		
Simulator	the simulator allowing the full	Vas	
Room	range of motion of the treatment	res	
	table		
	Is there a provision for dimming	Vas	
	the room lights	res	
	Is there provision to store		
	treatment devices and daily used	Yes	
	quality assurance equipment		
	If the immobilization devices are		
	to be fabricated in the simulator		
	room, cabinet space to store	Yes	
	supplies for their fabrication will		
	be required		
	Is there a sink provided in this		
	room		No
	Is there an x-ray viewing window	Yes	

Treatment Planning Room

The facilities of the treatment planning room in the Department were studied using the standards given in Table 12

T 11 1A		1 .	
Tahla 17	Traatmant	nlanning	room
	ricatinent	manning.	IUUUII

Feature	Standard	Present	Absent
Treatment Planning Room	Is it located in close proximity	Yes	
	Is there a provision for dimming the room lights	Yes	
	Is there provision to store treatment devices and daily used quality assurance equipment	Yes	

Simulator room

The facilities of the simulator room in the Department were studied using the standards given in Table 13.

Table 13 Simulator room

Feature	Standard	Present	Absent
Simulator Room	Is it large enough to accommodate the simulator allowing the full range of motion of the treatment table	Yes	
	Is there a provision for dimming the room lights	Yes	
	Is there provision to store treatment devices and daily used quality assurance equipment	Yes	
	If the immobilization devices are to be fabricated in the simulator room, cabinet space to store supplies for their fabrication will be required	Yes	

Treatment planning room

The features of the treatment planning room in the Department were studied using the standards given in Table 14.

Table 14 Features	of	treatment	p	lanning	room
-------------------	----	-----------	---	---------	------

Feature	Standard	Present	Absent
Treatment Planning Room	Is it located in proximity to simulator room	Yes	
	Is it large enough to house the treatment planning computer with its video monitor, a printer and plotter, a digitized tablet and other computer	Yes	
	equipment		
	Is there provision for supplies of paper and pens or ink for printer and plotter	Yes	
	Is there a L shaped arrangement of the digitizer tablet and video monitor		No
	Is there space provided for light boxes		
	and a high intensity light for viewing	Yes	
	CT scans and plain X rays		

Mould room

The features of the mould room in the Department were studied using the standards given in Table 15.

Table 15 Features of mould room

Feature	Standard	Present	Absent
Mould Room	Is there space for tools, block cutter and counter top workspace pouring and mounting of blocks	Yes	
	Is there storage space for supplies of Styrofoam, trays and shielding material for custom blocking	Yes	
	Is there adequate ventilation provided if shielding materials are melted in above area	Yes	
	Is the required space for a patient couch	Yes	
	Is there a sink with refuse trap available	Yes	

Waiting areas

The features of the waiting in the Department were studied using the standards given in Table 16

Table 16 Features of waiting areas

Feature	Standard	Present	Absent
Waiting Areas	Is it adjacent to the treatment room, with space for seating of about twelve people for each machine	Yes	
	Is there separate waiting area for attending clinics and those awaiting treatment	Yes	
	Is there an area provided for provided patients on stretchers adjacent to the treatment area (but they should preferably be separated from	Yes	

	ambulatory patients)		
	Is there a provision of \appropriate		
osent	changing facilities close to the entrance		
	of the treatment room, and shielded	Vas	
	from the view of other patients and	res	
	visitors (can avoid patients having to		
	undress in the treatment room)		

High Dose Rate Brachytherapy

The features of high dose rate brachytherapy unit in the Department were studied using the standards given in Table 17.

Table 17 High Dose Rate Brachytherapy

-	Feature	Standard	Present	Absent
-	High Dose Rate Brachytherapy	Is there a radiographic imaging system	Yes	
		Is there a treatment planning area	Yes	
		Is there a locked and fixed container or device holding source	Yes	

Equipment for Brachytherapy

The features of equipment for brachytherapy unit in the Department were studied using the standards given in Table 18.

Table 18 Equipment for Brachytherapy

Feature	Standard	Present	Absent
High Dose Rate Brachytherapy	Is there a imaging equipment	Yes	
	Is there a treatment planning equipment	Yes	
	Is there a treatment delivery equipment	Yes	
	Is there a quality assurance equipment	Yes	
	Is there equipment for radiation safety and source handling	Yes	

Security provisions for High Dose Rate and Medium Dose Rate Brachytherapy Sources

The security provisions for high dose rate and medium dose rate brachytherapy sources Department were studied using the standards given in Table 19.

Table 19 Security provisions for High Dose Rate and Medium Dose Rate Brachytherapy Sources

Feature	Standard	Present	Absent
Security provisions for High Dose Rate and Medium Dose Rate Brachytherapy	Is there a locked room to separate the container from unauthorized access	Yes	
	Is there provision to detect unauthorized access to or removal of the source/sources in use	Yes	
	Use of the source in a locked room or controlled area	Yes	
	Is there continuous surveillance of the source	Yes	

Personnel Requirements

The personnel requirements for Radiotherapy Department were studied using the standards given in Table 20.

Table 20 Personnel Requirements				
Feature	Standard	Present	Absent	
Personnel	Is there a Medical Director/Head (Board	Ves		
Requirements	Certified in Radiation Oncology)	103		
	Are there Certified Radiation Oncologists	Yes		
	Are there Qualified Medical Physicists	Yes		
	Are there Certified Radiation Therapists	Yes		
	Is there Certified Simulation Staff	Yes		
	Is there certified Dosimetrist	Yes		
	Is there patient Support Staff	Yes		
	Is there Physician Assistant	Yes		
	Is there Certified Nursing Staff	Yes		
	Is there Administrative Support	Yes		

Workload

Workload of Linear Accelerator

The number of treatment sessions done in the whole year from 1^{st} January 2021 to 31^{st} December 2021 was obtained from the records. Total number of cases done were 13400.Maximum numbers of cases were done during the month of September (n=1209) while as minimum number of cases were done in month of June (n=866). Average number of patient treatments done per month is 1117 while as average number of treatments done daily on linear accelerator is 37.2

Figure 1 Number of treatments done on linear accelerator Workload of Cobalt 60 units

The number of treatments sessions done in the whole year from 1^{st} January 2021 to 31^{st} December 2021 was obtained from the records. There are two Cobalt 60 units in the radiotherapy department.

Theratron 780E

Total number of treatments done was 12309. Maximum numbers of cases were done during the month of January (n=1115) while as minimum number of cases were done in month of August (n=900). Average number of patient treatments done per month on Theratron 780E is 1026 while as average number of treatments done daily is 34.2

Total number of treatments done was 12709.Maximum numbers of cases were done during the month of October (n=1221) while as minimum number of cases were done in month of December (n=908). Average number of patient treatments done per month on Bhabhatron II TAW unit is 1059 while as average number of treatments done daily is 35.3

Work load CT simulator

The number of patients planned in CT Simulator for a period of one year was obtained from the records. Total number of patients planned in CT Simulator were 3360. Maximum numbers of cases were done during the month of January (n=350) while as minimum number of cases were done in month of November (n=287). Average number of patients planned per month is 280 while as average number of scans done daily on CT simulator is 9.3

Figure 4 Number of patients planned on CT simulator Annual Workload of Linear accelerator, Cobalt 60 units and CT Simulator

Figure 5 Annual workload of radiotherapy equipment

Average Monthly workload of Linear accelerator, Cobalt 60 unit and CT Simulator

Figure 6 Average monthly workload of radiotherapy equipment Average daily Workload of Linear accelerator, Cobalt 60

Figure 7 Daily workload of radiotherapy equipment

37.2

34.2

9.3

35.3

DISCUSSION

■daily workload

An observational study was conducted in the department of radiation oncology for a period of one year. A predesigned checklist was used to study the physical facilities available in the department. The checklist was designed as per guidelines of American college of radiation oncology. As per American college of radiation oncology⁴, Radiotherapy departments must be usually located on the periphery of the hospital complex to avoid radiation protection problems arising from therapy rooms being adjacent to high occupancy areas. Proximity to adjunct facilities, ready access for in-patients and

outpatients, and consolidation of all therapeutic radiological services. In our study it was observed that guidelines of national council for radiation protection^{4,6} have been followed in the designing of the department. The department is located in the periphery of the hospital with ready access for inpatients and outpatients. There is consolidation of all therapeutic radiological services. The access to the department was studied using the American college radiation oncology/NPRC standards ^{4,6,9}. It was observed that there is restricted access to the treatment areas of the hospital and the entrance to the department is through a shielded/regulated door. The mazes of the department were studied using the American college radiation oncology/NRPC standards^{4,7,8}. It was observed that mazes were long with small cross section with a physical barrier to discourage entry to the maze during treatment. The radiation warning signs and lights in the department were studied using the guidelines of international organization for standardization ^{10,11}. It is recommended to have illuminated warning signs at the different areas of the department. In our study radiation warning signs are properly illuminated with proper labelling of restricted areas. The treatment room lights were dimmable and adjustable. The room lighting and alignment lasers in the department were adjustable and can be dimmed as per requirement of treatments. The security of radioactive sources in the department it is of utmost significance. Guidelines of national council for radiation protection ^{4,5,7,8,12} recommended that radioactive sources must be stored under locks with restricted access limited only to authorized personnel. In our study it was observed that radioactive sources are under continuous surveillance within locked premises and with restricted entry. As per American college of radiation oncology^{4,11,12} The external beam radiation therapy equipment include superficial equipments, Roth voltage machines, Bettors, linear accelerators, machine using isotopes (cobalt 60, cesium 137 machines). The study found equipment for imaging, treatment planning, treatment delivery, quality assurance, radiation safety and other supplies were as per NCRP guidelines ^{4,11,12}.As per health building notes⁸ ideally the simulation room should be positioned within a suit contains clinic areas, the mould room and planning rooms. The room should be square or rectangular to ensure that the wall laser light alignment is simple and accurate. The patient entrance should be wide enough for access for patient bed. Control area should be wide enough for several staff to be present as it is normal during simulation procedures. It is recommended that the area of 25 sq feet is a minimum⁹. There should be adequate bench space for any subsidiary computer system. Due to the number of computers and monitors it is advisable to have air conditioning to maintain acceptable working area. In our study it was there was adequate provision for storing of treatment devices, immobilization devices and there was provision for dimming of lights. As per health building note ⁸ the dominating nature of linear accelerator and mass of high-tech equipment presents a daunting experience for patients. Every opportunity should be taken with the interior design to create pleasant, nonintimidating with a sense of order and reassurance. Lighting in the treatment room also plays an important role. Murals and painting on walls and ceilings with decorative or entertaining features are value in occupying the patient mind and offering some measures of distraction. Art work should be considered at an early point in the design process to allow adequate and timely consultation with users on the suitability of the

proposals and production of the finished products. In our study it is observed that treatment room is in close proximity to other patient care areas. There is adequate provision of storing treatment devices and daily used quality assurance equipment. A waiting area of 100-150 sq ft is recommended as per MacGibbony's guidelines.¹³ The features of the waiting areas in the department that were studied included availability of washrooms (separate for female and males), availability of wheelchairs and changing rooms in the waiting area. They were found in accordance with NCPR guidelines.^{4,6,10,11,12,13}As per findings of C K Bomford ⁵, the design of brachytherapy include a sealed sources of laboratory, brachytherapy ward and remote after loading unit. In our study there was a radiographic imaging system, treatment room and treatment planning area in accordance with guidelines. The number of treatment sessions done in the whole year was obtained from the records. Average number of patient treatments done per month is 1117 while as average number of treatments done daily on linear accelerator is 37.2. Total number of treatments done was 12309. Average number of patient treatments done per month on Theratron 780E is 1026 while as average number of treatments done daily is 34.2 The decrease in the number of cases on Theratron 780E during some months of 2021 was due to reduction in activity of source which was later restored by replacement of source. Average number of patient treatments done per month on Bhabhatron II TAW is 1059 while as average number of treatments done daily is 35.3. The number of patients planned in CT Simulator for a period of one year was obtained from the records. Total number of patients planned in CT Simulator were 3360. Maximum numbers of cases were done during the month of January (n=350) while as minimum number of cases were done in month of November (n=287). Average number of patients planned per month is 280 while as average number of scans done daily on CT simulator is 9.3.

CONCLUSION

The present study observed that the department of radiotherapy had adequate facilities for providing various modalities of treatment. The physical facilities are per various standards laid down by the regulatory authorities. The study observed that the major equipment of radiotherapy department i.e CT simulator, Theratron, Bhabhatron II TAW and linear accelerator have a huge workload that can have a negative impact on treatment efficacy by causing frequent breakdowns.

Ethical Statement

This study was approved by the Institutional Ethics Committee of SKIMS with the Reference Number IEC/SKIMS Protocol # RP 169/2022. The written informed consent was obtained from the participants in the study.

How to cite this article:

Meenakshi Koul, Mukul Gupta, Yatoo G.H and Samina Mufti. 2023, A Study on The Available Facilities And Workload In A Radiotherapy Department At A Tertiary Care Teaching Hospital In North India. *International Journal of Current Advanced Research*. 14(08), pp. 2491-2497.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest

The authors have no conflict of interest to declare.

References

- 1. Goel .S.L. and R Kumar. Management of hospital, Vol .1. (2002).
- 2. Khan, M. F, Dr. Khan H, Management of superspeciality hospital; Radiotherapy unit .New Delhi. Deep and Deep publications pvt. Ltd. (2005) 204.
- Cotter G. W, Dobellbower R. R. Radiation oncology practice accreditation: The American College of Radiation Oncology, Practice Accreditation Program, guidelines and standards. 2005 August; Vol.35; http://www.crohonline.com/article/S1040-8428(05)00047-8
- 4. Bentel G.C. Radio therapy planning (2ndEd.). USA, Mc. millan publishing company; (1996) .16 -19.
- 5. Bomford C.K and Kunkler I.H. Walter and miller's text book of Radiation therapy, radiation physics; therapy and oncology. Elsevier Ltd (2003). 110
- 6. Sakharkar. Principles of hospital administration and planning.3rd edition (2009).
- Cherry .P and Duxbury A (Ed). Practical Radio therapy Physics and equipment. A. Ouxbury. Publication Green wich medical media LTD London. .(1998) 73
- 8. Health Building note 54: Facilities for cancer service. Published by TSO and Online www.teroshop.co.uk.
- 9. Mariya Qureshi *et al.* Epidemiology of cancers in Kashmir, India: An analysis of hospital data. Advances in preventive medicine.7(6),1-6
- 10. Radiation Protection in the Design of Radio therapy Facilities. Design featured. Printed by the IAEA in Austria September 2006. STI/PUB/1223 IAEA.
- International Organisation for Standarisation, Basic Ionizing Radiation Symbol, ISO-1361, ISO, Geneva (1975).
- World Health Organization Technical report series no. 328, planning of radiotherapy facilities report of a joint IAEA/WHO Meeting Geneva
- 13. McGibony *et al.* Principles of Hospital Administration.2nd Edition