A GENERALIZED FIXED POINT THEOREM IN G-METRIC SPACE

Manoj Garg ${ }^{1}$ and Shikha Agarwal ${ }^{2}$
${ }^{1}$ Durga Narayan Degree (P.G.) College, Fatehgarh, Farrukhabad (U.P.)
${ }^{2}$ Department of Mathematics, SCRIET, CCS University, Meerut(U.P.)

ARTICLE INFO

Article History:

Received $13^{\text {th }}$ April, 2023
Received in revised form $11^{\text {th }}$ May, 2023
Accepted $8^{\text {th }}$ June, 2023
Published online $28^{\text {th }}$ July, 2023

Key words:

Common fixed point, G-metric space.

Abstract

In this paper, we prove some fixed point theorem for mappings satisfying new contractive condition in G-metric space and prove uniqueness of such fixed point also.

Copyright \odot The author(s) 2023. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

In past decades the Banach fixed point theorem for contraction mapping has been generalized and extended in many directions, since it plays a major role in mathematics and applied sciences. Mustafa and Sims ${ }^{10}$ introduce the concept of G-metric space as a generalization of metric space. The aim of this paper is to obtain a generalized common fixed point theorem for mappings satisfying contractive condition on complete G-metric space.

Preliminaries

Definition 2.1 ${ }^{10}$: Let X be a non empty set and let G: X x X x $\mathrm{X} \rightarrow \mathrm{R}^{+}$be a function satisfying the following conditions :
$\left(G_{1}\right) G(x, y, z)=0$ if $x=y=z$,
$\left(G_{2}\right) G(x, x, y)>0$, for all $x, y \in X$, with $x \neq y$,
$\left(G_{3}\right) G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,
$\left(\mathrm{G}_{4}\right) \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{G}(\mathrm{x}, \mathrm{z}, \mathrm{y})=\mathrm{G}(\mathrm{y}, \mathrm{z}, \mathrm{x})=\ldots \ldots$. (Symmetry in all three variables),
$\left(G_{5}\right) G(x, y, z) \leq G(x, a, a)+G(a, y, z)$, for all $x, y, z, a \in X$ (rectangle inequality),

Then the function is called a generalized metric i.e. G-metric on X and the pair (X, G) is called a G-metric space.
Definition 2.2 ${ }^{10}$: Let (X, G) and ($\mathrm{X}^{\prime}, ~ \mathrm{G}$) be two G- metric spaces and let $\mathrm{f}:(\mathrm{X}, \mathrm{G}) \rightarrow\left(\mathrm{X}^{\prime}, \mathrm{G}^{\prime}\right)$ be a function, then f is said to G-continuous at a point a $\in \mathrm{X}$ if given $\epsilon>0$ there exists $\delta>$ 0 such that $\mathrm{x}, \mathrm{y} \in \mathrm{X} ; \mathrm{G}(\mathrm{a}, \mathrm{x}, \mathrm{y})<\delta$ implies $\mathrm{G}^{\prime}(\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y}))<$ ϵ.

A function f ix G -continuous on X iff it is G-continuous at all $a \in X$.

Definition 2.3 ${ }^{10}$: Let (X, G) ba a metric space, then for $\mathrm{x}_{0} \in \mathrm{X}$, $r>0$, the G- ball with centre x_{0} and radius r is $B_{G}\left(x_{0}, r\right)=\{y \in$ $\left.X: G\left(x_{0}, y, y\right)<r\right\}$.

Definition 2.4 ${ }^{10}$: Let (X, G) be a G-metric space and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence of points in X. Then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is G-convergent to x if $\lim _{n \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$, i. e., for each $\epsilon>0$ there exists a positive integer N such that $G\left(x, x_{n}, x_{m}\right)<\epsilon$ for all $m, n \geq N$. We call that x is the limit of sequence and we write $x_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} x_{n}=x$.
Definition 2.5^{10} : Let (X, G) be a G-metric space. A sequence $\left\{x_{n}\right\}$ is said to be a G-cauchy sequence for each $\epsilon>0$ there exist a positive integer N such that $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{ml}}\right)<\epsilon$ for all l , $\mathrm{m}, \mathrm{n} \geq \mathrm{N}$.

Definition 2.6 ${ }^{10}$: A G-metric space (X, G) is called a symmetric G-metric space if $G(x, y, y)=G(y, x, x)$ for all x, y $\epsilon \mathrm{X}$.

Definition 2.7 ${ }^{10}$: Let (X, G) be a G-metric space and f : X \rightarrow X be a self mapping on (X, G). Then T is said to be a contraction if
$G(f x, f y, f z) \leq \alpha G(x, y, z)$, for all $x, y, z \in X$ where $0 \leq \alpha<1$.

Main Theorem

Theorem 3.1: Let (X, G) be a complete G-metric space and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be a self mapping such that f satisfies,
$G(f x, f y, f z) \leq \alpha G(x, f x, f x)+\beta G(y, f y, f y)+\gamma G(z, f z, f z)+$ $\delta \mathrm{G}(\mathrm{x}, \mathrm{fy}, \mathrm{fz})$
for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ and $\alpha, \beta, \gamma, \delta \geq 0$ with $0 \leq \alpha+\beta+\gamma+5 \delta<$ 1. Then f has a unique fixed point u in X and f is G -continuous at u.

Proof: Let $\mathrm{x}_{0} \in \mathrm{X}$ be an arbitrary point and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence such that $\mathrm{x}_{\mathrm{n}}=\mathrm{f}^{\mathrm{n}}\left(\mathrm{X}_{0}\right)$,

Then by (3.1)
$\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)=\mathrm{G}\left(\mathrm{f}^{\mathrm{n}}\left(\mathrm{x}_{0}\right), \mathrm{f}^{\mathrm{n}+1}\left(\mathrm{x}_{0}\right), \mathrm{f}^{\mathrm{n}+1}\left(\mathrm{x}_{0}\right)\right)$ $\leq \alpha G\left(f^{n-1}\left(x_{0}\right), f^{n}\left(x_{0}\right), f^{n+1}\left(x_{0}\right)\right)+\beta G\left(f^{n}\left(x_{0}\right)\right.$, $\left.\mathrm{f}^{\mathrm{n}+1}\left(\mathrm{x}_{0}\right), \mathrm{f}^{\mathrm{n}+1}\left(\mathrm{x}_{0}\right)\right)$
$+\gamma \mathrm{G}\left(\mathrm{f}^{\mathrm{n}}\left(\mathrm{x}_{0}\right), \mathrm{f}^{\mathrm{n}+1}\left(\mathrm{x}_{0}\right), \mathrm{f}^{\mathrm{n}+1}\left(\mathrm{x}_{0}\right)\right)+\delta \mathrm{G}\left(\mathrm{f}^{\mathrm{n}-1}\left(\mathrm{x}_{0}\right), \mathrm{f}^{\mathrm{n}+1}\left(\mathrm{x}_{0}\right), \mathrm{f}^{\mathrm{n}+1}\left(\mathrm{x}_{0}\right)\right)$
$\leq \alpha \mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\beta \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)+\gamma \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}\right.$,
$\left.\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)+\delta \mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)$
$\leq \alpha \mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\beta \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)+\gamma \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}\right.$,
$\left.\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)+\delta\left[\mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{G}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{G}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)\right]$
$\leq \alpha \mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\beta \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)+\gamma \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}\right.$,
$\left.x_{n+1}, x_{n+1}\right)+\delta\left[G\left(x_{n-1}, x_{n}, x_{n}\right)+2 G\left(x_{n+1}, x_{n+1}, x_{n}\right)+2 G\left(x_{n+1}\right.\right.$,
$\left.\left.x_{n+1}, x_{n}\right)\right]$
Thus we have
$G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \frac{\alpha+\delta}{1-(\beta+\gamma+4 \delta)} G\left(x_{n-1}, x_{n}, x_{n}\right)$

$$
\leq \mathrm{qG}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)
$$

Where $\mathrm{q}=\frac{\alpha+\delta}{1-(\beta+\gamma+4 \delta)}$, and $0<\mathrm{q}<1$
Moreover for all $\mathrm{m}, \mathrm{n} \in \mathrm{N}$ and $\mathrm{n}<\mathrm{m}$, by rectangular inequality
$\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}}\right) \leq \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{G}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}, \mathrm{x}_{\mathrm{n}+2}\right)+\ldots \ldots \ldots+$
$\mathrm{G}\left(\mathrm{x}_{\mathrm{m}-1}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}}\right)$

$$
\begin{aligned}
& \leq\left(\mathrm{q}^{\mathrm{n}}+\mathrm{q}^{\mathrm{n}+1}+\ldots \ldots . . . \mathrm{q}^{\mathrm{m}-1}\right) \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \\
& \leq \frac{\mathrm{q}^{\mathrm{n}}}{1-\mathrm{q}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{1}\right)
\end{aligned}
$$

If $m, n \rightarrow \infty$, then $G\left(x_{n}, x_{m}, x_{m}\right)=0$ i. e. $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete there exist $u \in X$ such that $\left\{x_{n}\right\}$ is G-converges to u.

Now if $\mathrm{fu} \neq \mathrm{u}$ then
$\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{fu}, \mathrm{fu}\right) \leq \alpha \mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\beta \mathrm{G}(\mathrm{u}, \mathrm{fu}, \mathrm{fu})+\gamma \mathrm{G}(\mathrm{u}, \mathrm{fu}, \mathrm{fu})$ $+\delta \mathrm{G}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{fu}, \mathrm{fu}\right)$
Since f is G-continuous, taking limit as $\mathrm{n} \rightarrow \infty$ we have
$G(u, f u, f u) \leq \alpha G(u, u, u)+(\beta+\gamma) G(u, f u, f u)+\delta G(u, f u, f u)$ $\leq(\beta+\gamma+\delta) \mathrm{G}(\mathrm{u}, \mathrm{fu}, \mathrm{fu})$. This contradiction so $\mathrm{fu}=$ u.

For uniqueness, suppose $u \neq v$, such that $f v=v$, then
$G(u, v, v) \leq \alpha G(u, f u, f u)+(\beta+\gamma) G(v, f v, f v)+\delta G(u, f v, f v)$

$$
\leq \alpha \mathrm{G}(\mathrm{u}, \mathrm{fu}, \mathrm{fu})+(\beta+\gamma) \mathrm{G}(\mathrm{v}, \mathrm{fv}, \mathrm{fv})+\delta \mathrm{G}(\mathrm{u}, \mathrm{fv}, \mathrm{fv})
$$

$\operatorname{Or}(1-d) G(u, v, v) \leq 0$, so that $G(u, v, v)=0$, Which implies u $=\mathrm{v}$.
For G-continuity of f, let $\left\{y_{n}\right\}$ be a sequence in X such that lim $y_{n}=u$, then
$G\left(u, f y_{n}, f y_{n}\right) \leq \alpha G(u, f u, f u)+\beta G\left(y_{n}, f y_{n}, f y_{n}\right)+\gamma G\left(y_{n}, f y_{n}\right.$, $\left.f y_{n}\right)+\delta G\left(u, f y_{n}, f y_{n}\right)$

$$
\leq \alpha G(u, f u, f u)+(\beta+\gamma) G\left(y_{n}, f y_{n}, f y_{n}\right)+\delta G(u,
$$

$\left.f y_{n}, f y_{n}\right)$

$$
\leq(\beta+\gamma) G\left(y_{n}, u, u\right)+(\beta+\gamma) G\left(y_{n}, f y_{n}, f y_{n}\right)+\delta
$$

$\mathrm{G}\left(\mathrm{u}, \mathrm{fy}_{\mathrm{n}}, \mathrm{fy}_{\mathrm{n}}\right)$

Or $G\left(u, f y_{n}, f y_{n}\right) \leq \frac{\beta+\gamma}{1-(\beta+\gamma+\delta)} G\left(y_{n}, u, u\right)$
Taking limit as $\mathrm{n} \rightarrow \infty$, we get $\mathrm{G}\left(\mathrm{u}, \mathrm{fy}_{\mathrm{n}}, \mathrm{fy}_{\mathrm{n}}\right) \rightarrow 0$ i. e. $\mathrm{fy}_{\mathrm{n}} \rightarrow \mathrm{u}$ = fu.
Thus f is G -continuous at u .

References

1. B. C. Dhage : Generalized metric spaces and mappings with fixed points, Bull. Cal. Math. Soci., 84(4), 1992, 329-336.
2. M. Abbas and B. E. Rhoades: Common fixed point results for non commuting mappings without continuity in G-metric spaces, Appl. Math. Comput., 2009, doi:10.1016/j.amc.2009.04.085.
3. W. Shatanawi : Some fixed point theorems in ordered G-metric spaces and applications, Abst. Appl. Anal., 2011, I.D. 126205.
4. Hassen Aydi W. Shatanawi and Calogero Vetro: On generalized weakly G-contraction mapping in G-metric spaces, Comp. Math. Appl., 62, 2011, 4222-4229.
5. B. C. Dhage: Generalized metric spaces and topological structure, Anal. S tiint, ifice ale Univ., 46(1), 2000, 324.
6. B. S. Chaudhary and P. Maity: Coupled fixed point results in generalized metric spaces, Math. Comput. Mod., 54, 2011, 73-79.
7. S. Gahler: 2-metrische R aume und ihret., Mathematische Nachrichten, 26(1-4), 1963, 115-148.
8. R. Saadati, S. M. Vaezpour, P. Vetro and B. E. Rhoadas: Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Mode., 52, 2010, 797-801.
9. S. Gahler: Zur geometric 2-metriche r, aume, Revue Roumaine de Mathematiques Pures et Appliquees, 11, 1966, 665-667.
10. Z. Mustafa, B. Sims: A new approach to generalized metric spaces, J. Nonlinear convex Anal., 7(2), 2006, 289-297.
11. Z. Mustafa, H. Obiedat and F. Awawdeh: Some fixed point theorem for mappings on complete G-metric spaces, Fixed point theory and applications, 2008, ID 189870, doi:10.1155/2008/189870.
12. A. Rajput, R. Gupta, R. Athaley and H. S. Jatav: Fixed point theorems and existence of fixed points in complete G-Metric spaces, Ultra Sci., 28(3)A, 2016, 135-140.

How to cite this article:

Manoj Garg and Shikha Agarwal (2023) 'A Generalized Fixed Point Theorem in G-Metric Space', International Journal of Current Advanced Research, 12(07), pp. 2352-2353. DOI: http://dx.doi.org/10.24327/ijcar.2023.2353.1509

