International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614
Available Online at www.journalijcar.org
Volume 10; Issue 11 (B); November 2021; Page No.25561-25564
DOI: http://dx.doi.org/10.24327/ijcar.2021. 25564.5102

ON FINDING INTEGER SOLUTIONS TO THE TERNARY QUADRATIC DIOPHANTINE EQUATION $2\left(x^{2}+y^{2}\right)-3 x y=43 z^{2}$

Vidhyalakshmi S., Umamaheswari N., Revathi M and Gopalan M.A

Department of Mathematics, SIGC, Affiliated to Bharathidasan University, Trichy, Tamilnadu, India

ARTICLEINFO

Article History:

Received $06^{\text {th }}$ August, 2021
Received in revised form $14^{\text {th }}$
September, 2021
Accepted $23^{\text {rd }}$ October, 2021
Published online $28^{\text {th }}$ November, 2021

Abstract

The homogeneous ternary quadratic equation given by $2\left(x^{2}+y^{2}\right)-3 x y=43 z^{2}$ is analysed for its non-zero distinct integer solutions through different methods. Also, formulae for generating sequence of integer solutions based on the given solution are presented.

Key words:

Ternary quadratic, Homogeneous quadratic, Integer solutions

Copyright $(2021$ Vidhyalakshmi S et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Ternary quadratic equations are rich in variety [1-4, 17-19]. For an extensive review of sizable literature and various problems, one may refer [5-16]. In this communication, yet another interesting homogeneous ternary quadratic Diophantine equation given by $2\left(x^{2}+y^{2}\right)-3 x y=43 z^{2}$ is analysed for its non-zero distinct integer solutions through different methods. Also, formulas for generating sequence of integer solutions based on the given solution are presented.

Method of analysis

The ternary quadratic Diophantine equation to be solved for non-zero distinct integral solution is
$2\left(x^{2}+y^{2}\right)-3 x y=43 z^{2}$
Introduction of the linear transformations
$\mathrm{x}=\mathrm{u}+\mathrm{v}, \mathrm{y}=\mathrm{u}-\mathrm{v}, \mathrm{u} \neq \mathrm{v} \neq 0$
in (1) leads to
$u^{2}+7 v^{2}=43 z^{2}$
The above equation is solved for u, v and z through different ways and using (2), the values of x and y satisfying (1), are obtained which are illustrated below:

[^0]Department of Mathematics, SIGC, Affiliated to Bharathidasan University, Trichy, Tamilnadu, India

Assume

$\mathrm{z}=\mathrm{a}^{2}+7 \mathrm{~b}^{2}$
Write 43 as
$43=(6+i \sqrt{7})(6-i \sqrt{7})$
Using (4) and (5) in (3) and employing the method of factorization, define

$$
(u+i \sqrt{7} v)=(6+i \sqrt{7})(a+i \sqrt{7} b)^{2}
$$

Equating the real and imaginary parts, we get
$u=6 a^{2}-14 a b-42 b^{2}$
$\mathrm{v}=\mathrm{a}^{2}+12 \mathrm{ab}-7 \mathrm{~b}^{2}$
In view of (2), one obtains

$$
\left.\begin{array}{l}
x=7 a^{2}-2 a b-49 b^{2} \\
y=5 a^{2}-26 a b-35 b^{2} \tag{6}
\end{array}\right)
$$

Thus (4) and (6) represent the integer solution to (1).
Way2:
One can write 43 as

$$
\begin{equation*}
43=\frac{(25+i 3 \sqrt{7})(25-\mathrm{i} 3 \sqrt{7})}{4^{2}} \tag{7}
\end{equation*}
$$

Using (4) and (7) in (3) and applying the method of factorization, define
$(u+i \sqrt{7} v)=\frac{(25+i 3 \sqrt{7})(a+i \sqrt{7} b)^{2}}{4}$
Equating the real and imaginary parts, we get
$u=\frac{25 \mathrm{a}^{2}-42 \mathrm{ab}-175 \mathrm{~b}^{2}}{4}$
$v=\frac{3 \mathrm{a}^{2}+50 \mathrm{ab}-21 \mathrm{~b}^{2}}{4}$
In view of (2), one obtains
$\left.\begin{array}{l}\mathrm{x}=\frac{28 \mathrm{a}^{2}+8 a b-196 b^{2}}{4} \\ y=\frac{22 a^{2}-92 a b-154 b^{2}}{4}\end{array}\right\}$
To obtain the integer solutions, replacing a by 2 A and b by 2 B in (4) \& (8), the corresponding integral solutions of (1) are given by
$\left.\begin{array}{l}\mathrm{x}=28 \mathrm{~A}^{2}+8 A B-196 B^{2} \\ y=22 A^{2}-92 A B-154 B^{2} \\ z=4 A^{2}+28 B^{2}\end{array}\right\}$
Way3:
(3) can be written as
$\mathrm{u}^{2}+7 \mathrm{v}^{2}=43 \mathrm{z}^{2} * 1$
Write 1 on the R.H.S. of (10) as
$1=\frac{(3+i \sqrt{7})(3-i \sqrt{7})}{4^{2}}$
Using (4), (5) and (11) in (10) and utilizing the method of factorization, define
$(u+i \sqrt{7} v)=(6+i \sqrt{7})(a+i \sqrt{7} b)^{2}\left[\frac{(3+i \sqrt{7})}{4}\right]$
Equating the real and imaginary parts, the values of u and v are obtained as
$\mathrm{u}=\frac{11 \mathrm{a}^{2}-126 \mathrm{ab}-77 \mathrm{~b}^{2}}{4}$
$\mathrm{v}=\frac{9 \mathrm{a}^{2}+22 \mathrm{ab}-63 \mathrm{~b}^{2}}{4}$
Proceeding as in Way2, we get

$$
\left.\begin{array}{l}
\mathrm{x}=20 \mathrm{~A}^{2}-104 A B-140 B^{2} \\
y=2 A^{2}-148 A B-14 B^{2} \tag{12}\\
z=4 A^{2}+28 B^{2}
\end{array}\right\}
$$

Thus (12) represent the non-zero distinct solution of (1)

Way 4:

We can write 1 on the R.H.S. of (10) as
$1=\frac{(1+3 \mathrm{i} \sqrt{7})(1-3 \mathrm{i} \sqrt{7})}{8^{2}}$
Using (4),(5) and (13) in (10) and by factorization method define
$(u+i \sqrt{7} v)=\frac{(6+i \sqrt{7})(a+i \sqrt{7} b)^{2}(1+3 i \sqrt{7})}{8}$
Equating the real and imaginary parts, we get
$u=\frac{-15 a^{2}-266 a b+105 b^{2}}{8}$
$\mathrm{v}=\frac{19 \mathrm{a}^{2}-30 \mathrm{ab}-133 \mathrm{~b}^{2}}{8}$
By proceeding as in Way2, we obtain
$x=2 A^{2}-148 A B-14 B^{2}$
$y=-17 A^{2}-118 A B+119 B^{2}$
$\mathrm{z}=4 \mathrm{~A}^{2}+28 \mathrm{~B}^{2}$
which represents the non-zero integral solution of (1).
Way 5 :
Write (3) in the form of ratio as
$\frac{u+6 z}{7(z-v)}=\frac{z+v}{u-6 z}=\frac{a}{b}, b \neq 0$,
which is equivalent to the system of double equations
$b u+7 a v+(6 b-7 a) z=0$
$a u-b v+(-6 a-b) z=0$
Solving the above system of double equations and using (2),the corresponding integer solutions to (1) are found to be

$$
\begin{aligned}
& x=49 a^{2}+2 a b-7 b^{2} \\
& y=35 a^{2}+26 a b-5 b^{2}
\end{aligned}
$$

$\mathrm{z}=7 \mathrm{a}^{2}+\mathrm{b}^{2}$

Note1:

It is noted that (3) may also be written in the form of ratios as below:
(i) $\frac{u+6 z}{z+v}=\frac{7(z-v)}{u-6 z}=\frac{a}{b}$
(ii) $\frac{u-6 z}{7(z-v)}=\frac{z+v}{u+6 z}=\frac{a}{b}$
(iii) $\frac{u-6 z}{z+v}=\frac{7(z-v)}{u+6 z}=\frac{a}{b}$
(iv) $\frac{u+6 z}{7(z+v)}=\frac{(z-v)}{u-6 z}=\frac{a}{b}$
(v) $\frac{u-6 z}{z-v}=\frac{7(z+v)}{u+6 z}=\frac{a}{b}$

For each of the above ratios, the corresponding integer solutions to (1) are exhibited below:

Solutions obtained through (i)

$x=5 a^{2}+26 a b-35 b^{2}$
$y=7 a^{2}+2 a b-49 b^{2}$
$\mathrm{z}=\mathrm{a}^{2}+7 \mathrm{~b}^{2}$

Solutions obtained through (ii)

$x=35 a^{2}-26 a b-5 b^{2}$
$y=49 a^{2}-2 a b-7 b^{2}$
$z=-7 a^{2}-b^{2}$
Solutions obtained through (iii)
$x=-7 a^{2}+2 a b+49 b^{2}$
$y=-5 a^{2}+26 a b+35 b^{2}$
$z=a^{2}+7 b^{2}$
Solutions obtained through (iv)
$x=35 a^{2}+26 a b-5 b^{2}$
$y=49 a^{2}+2 a b-7 b^{2}$
$z=7 a^{2}+b^{2}$
Solutions obtained through (v)
$x=5 a^{2}-26 a b-35 b^{2}$
$y=7 a^{2}-2 a b-49 b^{2}$
$z=a^{2}+7 b^{2}$
Way6
Introducing the linear transformations
$z=X+7 R, v=X+43 R, u=6 U$
(14) in (3),it gives
$X^{2}=301 R^{2}+U^{2}$
which is satisfied by
$X=r^{2}+301 s^{2}, U=r^{2}-301 s^{2}, R=2 r s(16)$
From (16), (14) \&(2), we obtain the integer solutions to (1) as given below:
$x=7 r^{2}+86 r s-1505 s^{2}$
$y=5 r^{2}-86 r s-2107 s^{2}$
$z=r^{2}+301 s^{2}+14 r s$

Solutions from system1
$\mathrm{x}=4214 \mathrm{k}^{2}+4300 \mathrm{k}+1094$
$\mathrm{y}=3010 \mathrm{k}^{2}+2924 \mathrm{k}+706$
$\mathrm{z}=602 \mathrm{k}^{2}+616 \mathrm{k}+158$
Solutions from system 2
$x=602 k^{2}+688 k+176$
$y=430 k^{2}+344 k+40$
$z=86 k^{2}+100 k+32$

Solutions from system3

$\mathrm{x}=98 \mathrm{k}^{2}+184 \mathrm{k}-40$
$\mathrm{y}=70 \mathrm{k}^{2}-16 \mathrm{k}-176$
$\mathrm{z}=14 \mathrm{k}^{2}+28 \mathrm{k}+32$
Solutions from system4
$\mathrm{x}=14 \mathrm{k}^{2}+100 \mathrm{k}-706$
$\mathrm{y}=10 \mathrm{k}^{2}-76 \mathrm{k}-1094$
$\mathrm{z}=2 \mathrm{k}^{2}+16 \mathrm{k}+158$
Solutions from system5
$\mathrm{x}=-10 \mathrm{k}^{2}+76 \mathrm{k}+1094$
$y=-14 k^{2}-100 k+706$
$\mathrm{z}=2 \mathrm{k}^{2}+16 \mathrm{k}+158$

Solutions from system6

$x=-70 k^{2}+16 k+176$
$\mathrm{y}=-98 \mathrm{k}^{2}-184 k+40$
$\mathrm{Z}=14 \mathrm{k}^{2}+28 \mathrm{k}+32$
Solutions from system 7
$\mathrm{x}=-430 \mathrm{k}^{2}-344 \mathrm{k}-40$
$\mathrm{y}=-602 \mathrm{k}^{2}-688 k-176$
$\mathrm{z}=86 \mathrm{k}^{2}+100 \mathrm{k}+32$

It is to be noted that (15) may be represented as the system of double equation as shown in Table: 1

Table 1 System of double equations

System	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$X+U$	$301 R^{2}$	$43 R^{2}$	$7 R^{2}$	R^{2}	301	43	7	1	$301 R$	$43 R$	$7 R$	R
$X-U$	1	7	43	301	R^{2}	$7 R^{2}$	$43 R^{2}$	$301 R^{2}$	R	$7 R$	$43 R$	$301 R$

Solving each of the system of double equations in Table:1,the values of X, U and R are obtained. From (14) \& (2),the corresponding solutions to (1) are found and They are exhibited below:

Solutions from system8

$\mathrm{x}=-3010 \mathrm{k}^{2}-2924 \mathrm{k}-706$
$\mathrm{y}=-4214 \mathrm{k}^{2}-4300 k-1094$
$\mathrm{z}=602 \mathrm{k}^{2}+616 \mathrm{k}+158$

Solutions from system9

$x=1094 R$
$y=706 R$
$z=158 R$

Solutions from system 10

$x=176 R$
$y=40 R$
$z=32 R$

Solutions from system11

$x=-40 R$
$y=-176 R$
$z=32 R$

Solutions from system 12

$x=-706 R$
$y=-1094 R$
$z=158 R$

CONCLUSION

To conclude, one may search for other patterns of solutions and their corresponding properties.

References

1. Bert Miller, "Nasty Numbers", The Mathematics Teacher, Vol-73, No.9,p.649, 1980.
2. Bhatia .B.L and SupriyaMohanty,"Nasty Numbers and their Characterisation" Mathematical Education, Vol-II, No.1, p.34-37,July-September, 1985.
3. Carmichael.R.D.,The theory of numbers and Diophantine Analysis, NewYork, Dover, 1959.
4. Dickson.L.E., History of Theory of numbers, vol.2:Diophantine Analysis, New York, Dover, 2005.
5. Gopalan. M.A.,Manjusomnath, and Vanitha.M., Integral Solutions of $k x y+m(x+y)=z^{2}$, ActaCienciaIndica, Vol 33, No. 4,1287-1290, (2007).
6. Gopalan M.A., ManjuSomanath and V.Sangeetha, On the Ternary Quadratic Equation $5\left(x^{2}+y^{2}\right)-9 x y=19 z^{2} \quad$,IJIRSET,Vol 2, Issue 6,2008-2010,June 2013.
7. Gopalan .M.A., and A.Vijayashankar, Integral points on the homogeneous cone $z^{2}=2 x^{2}+8 y^{2}$,IJIRSET, Vol 2(1), 682-685,Jan 2013.
8. Gopalan .M.A., S.Vidhyalakshmi, and V.Geetha, Lattice points on the homogeneous cone $z^{2}=10 x^{2}-6 y^{2}$,IJESRT,Vol 2(2), 775-779,Feb 2013.
9. Gopalan .M.A.,S.Vidhyalakshmi andE.Premalatha,On the Ternary quadratic Diophantine equation $x^{2}+3 y^{2}=7 z^{2}$,Diophantus.J.Math1(1),51-57,2012.
10. Gopalan .M.A.,S.Vidhyalakshmi andA.Kavitha,Integral points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$, Diophantus.J.Math1(2),127-136,2012.
11. M.A.Gopalan and G.Sangeetha, Observations on $y^{2}=3 x^{2}-2 z^{2}, \quad$ Antarctica J.Math., 9(4),359362,(2012).
12. Gopalan M.A., ManjuSomanath and V.Sangeetha, Observations on the Ternary Quadratic Diophantine Equation $y^{2}=3 x^{2}+z^{2}$,Bessel J.Math., 2(2),101105,(2012).
13. Gopalan .M.A.,S.Vidhyalakshmi andE.Premalatha,On the Ternary quadratic equation $x^{2}+x y+y^{2}=12 z^{2}$,Diophantus.J.Math1(2),6976,2012.
14. Gopalan, M.A., Vidhyalakshmi, S., Thiruniraiselvi, N. Observations on the cone $z^{2}=a x^{2}+a(a-1) y^{2}$, International Journal of Multidisciplinary Research and Development, Vol.2(9),Pp.304-305,Sep-2015.
15. Meena.K, Gopalan .M.A.,S.Vidhyalakshmi and N. Thiruniraiselvi, Observations on the quadratic equation $x^{2}+9 y^{2}=50 z^{2}$, International Journal of Applied Research, Vol 1(2),51-53,2015.
16. R.Anbuselviand S.A. Shanmugavadivu, On homogeneous Ternary quadratic Diophantine equation $z^{2}=45 x^{2}+y^{2}$, IJERA, 7(11), 22-25, Nov 2017.
17. Mordell L.J., Diophantine Equations, Academic press, London (1969).
18. Nigel,P.Smart, The Algorithmic Resolutions of Diophantine Equations, Cambridge University Press, London 1999.
19. Telang, S.G., Number Theory, TataMcGraw-hill publishing company, New Delhi, 1996.

How to cite this article:

Vidhyalakshmi S et al (2021) 'On Finding Integer Solutions To The Ternary Quadratic Diophantine Equation ', International Journal of Current Advanced Research, 10(11), pp. 25561-25564. DOI: http://dx.doi.org/10.24327/ijcar.2021. 25564.5102

[^0]: *Corresponding author: Umamaheswari \mathbf{N}

