International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614 Available Online at www.journalijcar.org Volume 9; Issue 11 (B); November 2020; Page No. 23328-23338 DOI: http://dx.doi.org/10.24327/ijcar.2020. 23338.4622

Research Article

COMPARATIVE STUDY OF THE EFFECT OF DIFFERENT CONCENTRATIONS OF MEDIA PHOSPHOROUS OF TWO SPECIES OF AZOLLA IN TWO SEASONS

Gopa Shome^{1*} and Jagatpati Tah²

¹Department of Botany, Chandernagore College, Chandernagore, Hooghly - 712 136 ²Department of Life Science and Biotechnology, Jadavpur, 188 Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata - 700 032

ARTICLE INFO

Article History: Received 13th August, 2020 Received in revised form 11th September, 2020 Accepted 8th October, 2020 Published online 28th November, 2020

*Key words: Azollas*p, media-P, light intensities, bio-mass, seasons, green world.

ABSTRACT

Two species of *Azolla (A.pinnata* and *A.filiculoides)* were selected to grow in different concentrations of phosphorus in two different seasons in tropical plains of the district of Burdwan, West Bengal to compare its productivity. Phosphorus in different concentrations was used uniformly for both the seasons. By absorbing phosphorus, fresh *Azolla* bio-mass was collected, which has been shown in this context. A correlation coefficient calculation amongst two consecutive seasons were done following Panse and Sukhatme (2005). It had a remarkable difference between two different seasons allowing them different light intensities. The total biomass weight and size of the plant materials were increased due to all those factors and it was observed better in the summer months than the winter months. Difference in optimum concentrations of media-P was noted in case of both the species in two different seasons. All meteorological informations were noted properly.

The main aims and objectives were to establish the research results which may help the poor farmer by utilizing this species for their crop field in easy way. Indeed, our moto is to propagate these activities in a mega scale practice for developing a green world.

Copyright©2020 Gopa Shome and Jagatpati Tah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Azolla (mosquito fern, duckweed fern, fairy moss, water fern

It is a genus of seven species of aquatic ferns in the family Salviniaceae. They are extremely reduced in form and specialized, looking nothing like other typical ferns but more resembling duckweed or some mosses. Members of the genus *Azolla* are utilized throughout the world for a wide variety of purposes besides its widespread uses as an ornamental in fish ponds and tanks (Lumpkin and Plucknett, 1980; 1982). The major fundamental constraints of growth of *Azolla*spare limitation of water supply and phosphorus and susceptibility to temperature, pests and pathogens. Phosphorus represents a major limiting factor in the field for the growth of the *Azolla*-*Anabaena* symbiotic nitrogen-fixing system.

Azollafiliculoides is one of just two fern species for which a reference genome has been published (Evrard and Hove, 2004) and it is a native to the America and has invaded many places in Europe and South Africa (Hill, 2003), *Azollafiliculoides* is a small, free floating freshwater fern, green to reddish-brown or purplish orange or red at the edges, branching freely, and breaking into smaller sections as it grows.

*Corresponding author: Gopa Shome

The adultplant is approximately25-35 mm long, with the length of the individual frond ("leaves") being approximately 1-1,5 mm. Plants can change colour from green to brown and red as a result of changes in sunlight intensity (and shade) as well as ambient temperature. Azollafiliculoides is able to undergo rapid vegetative production throughout the year by the elongation and fragmentation of the small fronds. Under ideal conditions an infestation can double in area every 4-5 days. At such growth rates it is capable of completely covering pond and lake surfaces in a matter of weeks or months. Under favourable environmental conditions. A. filiculoides fern undergoes sexual reproduction through spores (Henderson and Cilliers, 2002a and 2002b). It can also be dispersed on the feet and feathers of water birds and on/by mammals such as hippos and otters. It has been spread by the garden and aquaria trade and can find its way into water bodies through discarded garden or pond waste and flood events.

The species has been introduced to many regions of the Old World, grown for its nitrogen-fixing ability which can be utilised to enhance the growth rate of crops grown in water like paddy rice, or by removal from lakes for use as green manure. It is also used as an ornamental plant in ponds.

On the other hand, *A. pinnata* is small, 1.5-2.5 cm long, with an almost straight main axis with pinnately arranged side branches, progressively longer towards the base, thus roughly

Department of Botany, Chandernagore College, Chandernagore, Hooghly - 712 136

triangular in shape; the basal branches themselves becoming pinnate and eventually fragmenting as the main axis decomposes to form new plants. Roots have fine lateral rootlets, giving a feathery appearance in the water. Leaves minute, 1-2 mm long, overlapping in two ranks, upper lobe green, brownish green or reddish, lower lobe translucent brown; minute, short, pillae, more or less cylindrical unicellular hairs often present on the upper lobes. When fertile, round sporocarps 1-1.5 mm wide can be seen on the under-side at the bases of the side branches. The leaves often have a maroon-red tinge and the water can appear to be covered by red velvet layer.

The use of aquatic plants for removal of nutrients from the waste water has been studied by a large number of workers (Yount and Crossman, 1970; Boyd, 1949, 1955, 1969, 1970, 1971a, 1971b; Steward and Dinges, 1976a, 1976b; Ehrlich,1966; Jagadeesh and Lakshminarayana, 1971; Wooten and Dodd, 1976; Wolverton and McDonald, 1979; Reddy, 1981; 1982). A large amount of nutrients having access to water as pollutants is absorbed through the roots of aquatic plants (Dymond, 1948; Boyd, 1970). The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Thus the harvested biomass of this plant can play important role in the rice-field as an useful green manure rich in N P K.

MATERIALS AND METHODS

Plant Material

Two species of *Azolla* such as *A. filiculoides* and *A.pinnata* were taken for the present experiment. The genus possesses intrinsic interest in that its members are capable of assimilating atmospheric nitrogen with the help of a symbiont within the cavities of their leaves.

Open atmosphere and partial shade areas Distilled water Reagents used to prepare IRRI's media as followed by I. Watanabe, 1977.

Net house Culture vessels

Chemical balance

Necessary glass wares etc.

All the experimental studies were conducted in the net house, Department of Botany, The University of Burdwan, Burdwan, West Bengal, India.

Table of Meteorological Data (MD) recorded by District Seed FarmKalna Road,	, Burdwan in 1994
---	-------------------

6	Atmosphe	eric Temperature (⁰ C)[mean]		ndiation m ⁻² s ⁻¹)	Relative humidity (%) [mean]			Rainfall (mm)
Season —	Max.	Min.	Mean	O. A.	P.S.	Mean Max.	Mean Min.	Mean	
Jan-Feb	25.20	15.40	20.30	437.36	203.77	91	53.9	72.45	0
Mar-Apr	35.65	23.07	29.36	532.98	252.62	91	32.18	61.59	0

Table 1.A-i Correlations between light intensities of A. filiculoi	ds Table 1.A-ii C	Correlations between light intensities of A. filiculoids in
--	-------------------	---

			0		5				0		5
			in 0 ppm						5 ppm		
Sl. No	Х	Y	X ²	Y^2	XY	Sl. No	Х	Y	X^2	Y ²	XY
1	2.71	2.61	7.3441	6.8121	7.0731	1	4.61	4.31	21.2521	18.5761	19.8691
2	2.73	2.63	7.4529	6.916\9	7.1799	2	4.63	4.27	21.4369	18.2329	19.7701
3	2.70	2.64	7.29	6.9696	7.128	3	4.64	4.3	21.5296	18.49	19.952
4	2.74	2.60	7.5076	6.76	7.00	4	4.60	4.28	21.16	18.3184	19.688
5	2.72	2.62	7.3984	6.8644	7.1264	5	4.62	4.29	21.3444	18.4041	19.734
6	2.74	2.59	7.5076	6.7081	7.00	6	4.64	4.31	21.5296	18.5761	19.9984
7	2.71	2.60	7.3441	6.76	7.046	7	4.60	4.28	21.16	18.3184	19.688
8	2.71	2.61	7.3441	6.8121	7.0731	8	4.61	4.30	21.2521	18.49	19.823
9	2.69	2.58	7.2361	6.6564	6.9402	9	4.60	4.32	21.16	18.6624	19.872
10	2.75	2.66	7.5625	7.0756	7.315	10	4.65	4.26	21.6225	18.1476	19.809
Σ	27.2	26.14	73.9874	68.3352	71.1023	Σ	46.20	42.92	213.447	184.216	198.203
Σ=(x-x ⊂	$)^2 = 73.9874$	$4 - (27.2)^2 = ($	0.0034, Σ=(y-yč	ةة) ² = 68.335	$(2-(26.14)^2)$	Σ=(x-xō	$)^{2} = 213.44$	$72 - (46.20)^2$	= 0.0032, Σ=(y-	•yõõõ)²=184.∶	$1476 - (42.92)^2$
	Σ= (x-x ˆ)	(y-y ^o) = 71.	.1023-(27.2X26	(14)/10 = 0.001	15 ; Hence, Υ) (y-y Õ) = 19	98.2036-(46.202	(42.92)/10 = -0	.0868; Hence,
0.3553						Y= 6.016	66				

		11	n 10 ppm			filiculoids in 15 ppm						
SI. No	Х	Y	X ²	Y^2	XY	Sl. No	Х	Y	X^2	Y^2	XY	
1	4.94	4.31	24.4036	18.5761	21.2914	1	5.2	4.99	27.04	24.9001	25.948	
2	4.9	4.27	24.01	18.2329	20.923	2	5.22	4.97	27.2484	24.7009	25.9434	
3	4.93	4.30	24.3049	18.49	21.199	3	5.23	4.96	27.3529	24.6016	25.9408	
4	4.91	4.28	24.1081	18.3184	21.0148	4	5.19	4.99	26.9361	24.9001	25.8981	
5	4.92	4.29	24.2064	18.4041	21.1068	5	5.21	4.98	27.1441	24.8004	25.9458	
6	4.91	4.33	24.1081	18.7489	21.2603	6	5.00	5.00	25.00	25.00	25.000	
7	4.9	4.32	24.01	18.6624	21.168	7	5.22	5.1	27.2484	26.010	26.622	
8	4.91	4.27	24.1081	18.2329	20.9657	8	5.25	4.97	27.5625	24.7009	26.0925	
9	4.94	4.26	24.4036	18.1476	21.0444	9	5.19	4.99	26.9361	24.9001	25.8981	
10	4.95	4.27	24.5025	18.2329	21.1365	10	5.19	4.98	26.9361	24.8004	25.8981	
Σ	49.21	42.9	242.165	184.046	211.109	Σ	51.9	49.93	269.404	249.314	259.186	
Σ=(x-x [°]) ²	=242.1653-	$-(49.21)^2 = ($	0.0012, Σ=(y-y	õõ)²=184.04	$-62-(42.9)^2$	Σ=(x-x ~)	$^{2} = 269.40$	$46 - (51.9)^2$	$= 0.0436$, $\Sigma = (2)$	y-yōōō)²=249	.3145 –	

METHODS

_

The experiment was performed using original IRRI's medium having 20 ppm of phosphorus concentration. Not only 20 ppm, but different concentrations of phosphorus such as 5 ppm, 10 ppm, 15 ppm and 60 ppm, alongwith a control without media-P were prepared and two species of *Azolla*were allowed to grow in it to find out the differences in growth, of those two species after the 10 days of incubation, both in O.A.and P.S. conditions.

Bi-variate correlation co-efficient model as followed by Panse & Sukhatme (2005)

RESULTS AND DISCUSSION

Results

The bi-variate correlation data have been calculated of both the species of *Azolla* which have been given below:

 Table 1.A-v
 Correlations between light intensities of A. filiculoids

		in	20 ppm			in 60 ppm						
Sl.no.	Х	Y	X^2	Y^2	XY	Sl. no	Х	Y	X^2	Y^2	XY	
1	5	5.33	25	28.4089	26.65	1	5	4.71	25	22.1841	23.55	
2	4.9	5.32	24.01	28.3024	26.068	2	4.9	4	24.01	16	19.6	
3	5	5.33	25	28.4089	26.65	3	5	4.71	25	22.1841	23.55	
4	4.8	5.31	23.04	28.1961	25.488	4	4.8	4.69	23.04	21.9961	22.512	
5	5.61	5.34	31.4721	28.5156	29.9574	5	5.01	4.72	25.1001	22.2784	23.6472	
6	5.62	5.35	31.5844	28.6225	30.067	6	5.02	4.73	25.2004	22.3729	23.7446	
7	5.63	5.36	31.6969	28.7296	30.1768	7	5.03	4.74	25.3009	22.4676	23.8422	
8	5.62	5.35	31.5844	28.6225	30.067	8	5.02	4.73	25.2004	25.3009	23.7446	
9	5.63	5.36	31.6969	28.7296	30.1768	9	5.03	4.74	25.3009	22.4676	23.8422	
10	5.62	5.35	31.5844	28.6225	30.067	10	5.02	4.73	25.2004	25.3009	23.7446	
Σ	53.43	53.4	286.669	285.158	285.368	Σ	49.83	46.5	248.353	222.552	231.777	

 $\Sigma{=}(x{-}x{\circ})^2$ =286.1586 –(53.43)² =0.68211, $\Sigma{=}(y{-}y{\circ}{\circ}{\circ})^2$ = 285.1586 – (53.4)² = 0.0026, $\Sigma{=}$ (x-x ${\circ}$) (y-y ${\circ})$ = 285.368-(53.43X53.4)/10 = 0.5018; Hence, Y= 1.230030496

Table 1.B-i Correlation	s between light intensities of

 Σ =(x-x[°])² =248.3531 -(49.83)² = 0.05021; Σ=(y-y[°])[°])² = 222.5526 - (46.5)² = 6.3276; Σ= (x-x[°]) (y-y[°]) = 231.7774-(49.83X46.5)/10 = 0.679; Hence, Y= 1.204634107

Table 1.A-vi: Correlations between light intensities of A. filiculoids

Table 1.B-ii:	Correlations	between	light intensities	of A. pinnata

		pini	<i>nata</i> in 0 ppm	L					in 5 ppm		
Sl. no	Х	Y	X^2	Y^2	XY	Sl. no	Х	Y	X^2	Y^2	XY
1	2.71	2.61	7.3441	6.8121	7.0731	1	4.61	4.31	21.2521	18.5761	19.8691
2	2.73	2.63	7.4529	6.9169	7.1799	2	4.63	4.27	21.4369	18.2329	19.7701
3	2.7	2.64	7.29	6.9696	7.128	3	4.64	4.3	21.5296	18.49	19.952
4	2.74	2.60	7.5076	6.76	7.00	4	4.60	4.28	21.16	18.3184	19.688
5	2.72	2.62	7.3984	6.8644	7.1264	5	4.62	4.29	21.3444	18.4041	19.734
6	2.74	2.59	7.5076	6.7081	7.00	6	4.64	4.31	21.5296	18.5761	19.9984
7	2.71	2.60	7.3441	6.76	7.046	7	4.60	4.28	21.16	18.3184	19.688
8	2.71	2.61	7.3441	6.8121	7.0731	8	4.61	4.30	21.2521	18.49	19.823
9	2.69	2.58	7.2361	6.6564	6.9402	9	4.60	4.32	21.16	18.6624	19.872
10	2.75	2.66	7.5625	7.0756	7.315	10	4.65	4.26	21.6225	18.1476	19.809
Σ	27.2	26.14	73.9874	68.3352	71.1023	Σ	46.20	42.92	213.4472	184.216	198.2036
Σ=(x-x [°]) ²	$\Sigma = (x - x^{\circ})^{2} = 73.9874 - (27.2)^{2} = 0.001; \Sigma = (y - y^{\circ} \circ \circ)^{2} = 68.3352 - (26.14)^{2} = 68.352 - (26.14)^{2} = 68.352 - (26.14)^{2} = 68.352 - (26.14)^{2} = 68.352 - (26.14)^{2} = 68$							72 -(46.20)	$\Sigma^2 = 0.0032; \Sigma = 0$	y-yōōō)²=184	4.216 -

A.

$$\begin{split} \Sigma &= (x - x^{\circ})^2 = 73.9874 - (27.2)^2 = 0.001; \\ \Sigma &= (y - y^{\circ} \circ^{\circ})^2 = 68.3352 - (26.14)^2 = \\ 0.032996; \\ \Sigma &= (x - x^{\circ}) (y - y^{\circ}) = 71.1023 - (27.2X26.14)/10 = 0.0015; \\ \text{Hence, } \Upsilon &= \\ 0.237289508 \end{split}$$

Table 1.B-iii: Correlations between light intensities of A. pinnata

Table 1.B-iv: Correlations between light intensities of A. pinnata in

 $(42.92)^2 = 0.0036$; $\Sigma = (x - x \overline{\circ}) (y - y \overline{\circ}) = 198.2036 - (46.20X42.92)/10 = -$

0.868; Hence, $\Upsilon = 25.57369939$

		iı	n 10 ppm		1				15 ppm		1	
Sl. no	Х	Y	X ²	Y^2	XY	Sl. no	Х	Y	X ²	Y^2	XY	
1	4.94	4.31	24.4036	18.5761	21.2914	1	5.2	4.99	27.04	24.9001	25.948	
2	4.9	4.27	24.01	18.2329	20.923	2	5.22	4.97	27.2484	24.7009	25.9434	
3	4.93	4.30	24.3049	18.49	21.199	3	5.23	4.96	27.3529	24.6016	25.9408	
4	4.91	4.28	24.1081	18.3184	21.0148	4	5.19	4.99	26.9361	24.9001	25.8981	
5	4.92	4.29	24.2064	18.4041	21.1068	5	5.21	4.98	27.1441	24.8004	25.9458	
6	4.91	4.33	24.1081	18.7489	21.2603	6	5.00	5.00	25.00	25.00	25.00	
7	4.9	4.32	24.01	18.6624	21.168	7	5.22	5.1	27.2484	26.01	26.622	
8	4.91	4.27	24.1081	18.2329	20.9657	8	5.25	4.97	27.5625	24.7009	26.0925	
9	4.94	4.26	24.4036	18.1476	21.0444	9	5.19	4.99	26.9361	24.9001	25.8981	
10	4.95	4.27	24.5025	18.2329	21.1365	10	5.19	4.98	26.9361	24.8004	25.8981	
Σ	49.21	42.9	242.165	184.0462	211.109	Σ	51.9	49.93	269.4046	249.314	259.1868	
Σ=(x-x [°]) ²	=(x-x [°]) ² =242.1653 -(49.21) ² = 0.68211, Σ=(y-y [°]) [°] = 184.0462 -								$046 - (51.9)^2 = 0.$			
$(42.9)^2 = 0.0$	$(42.9)^2 = 0.0052, \Sigma = (x - x^{\circ}) (y - y^{\circ}) = 211.1099 - (49.21X42.9)/10 = 0.001;$							249.3145 - (49.93) ² = 0.01401; Σ= (x-x [◦]) (y-y [◦]) = 259.3145-				
Hence, Y=	Hence, $Y = 0.25795827$ (51.9X49.93) / 10 = 0.0501; Hence, $Y = 2.027101169$											

 Table 1 B-v
 Correlations between light intensities of A. pinnata in 20

Table 1.B-vi Correlations between light intensities of A. pinnata in 60

			ppm						ppm		
Sl. no	Х	Y	X^2	Y^2	XY	Sl.no.	Х	Y	X ²	Y^2	XY
1	5	5.33	25	28.4089	26.65	1	5	4.71	25	22.1841	23.55
2	4.9	5.32	24.01	28.3024	26.068	2	4.9	4	24.01	16	19.6
3	5	5.33	25	28.4089	26.65	3	5	4.71	25	22.1841	23.55
4	4.8	5.31	23.04	28.1961	25.488	4	4.8	4.69	23.04	21.9961	22.512
5	5.61	5.34	31.4721	28.5156	29.9574	5	5.01	4.72	25.1001	22.2784	23.6472
6	5.62	5.35	31.5844	28.6225	30.067	6	5.02	4.73	25.2004	22.3729	23.7446
7	5.63	5.36	31.6969	28.7296	30.1768	7	5.03	4.74	25.3009	22.4676	23.8422
8	5.62	5.35	31.5844	28.6225	30.067	8	5.02	4.73	25.2004	25.3009	23.7446
9	5.63	5.36	31.6969	28.7296	30.1768	9	5.03	4.74	25.3009	22.4676	23.8422
10	5.62	5.35	31.5844	28.6225	30.067	10	5.02	4.73	25.2004	25.3009	23.7446
Σ	53.43	53.4	286.669	285.1586	285.368	Σ	49.83	46.5	248.3531	222.552	231.7774
$\Sigma = (x - x^{\circ})^{2} = 286.6691 - (53.43)^{2} = 1.19261; \Sigma = (y - y^{\circ} \circ \circ)^{2} = 285.1586 - (53.4)^{2} \qquad \Sigma = (x - x^{\circ})^{2} = 285.1586 - (53.4)^{2} = 285.1586 - (55.4)^{2$							$^{2} = 248.3531$	$1 - (49.83)^2 =$	0.05021; Σ=(y-y	ةة) ² = 222.552	$6 - (46.5)^2 =$
$= 0.0026; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 285.368 \cdot (53.43 \times 53.4)/10 = 0.0518; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (49.83 \times 46.5)/10 = 0.0679; \text{ Hence, } \Upsilon = 6.3276; \Sigma = (x \cdot x^{\circ}) (y \cdot y^{\circ}) = 231.774 \cdot (x \cdot y^{\circ}) = 231.774 $											

1.204634831

0.930237553

 Table 2.A-i
 Correlations between light intensities of A. filiculoids in

Table 2.A-ii Correlations between light intensities of A. filiculoids in 5

			0 ppm						ppm			
Sl. no	Х	Y	X ²	Y ²	XY	Sl. no	Х	Y	X ²	Y^2	XY	
1	2.71	2.61	7.3441	6.8121	7.0731	1	4.61	4.31	21.2521	18.5761	19.8691	
2	2.73	2.63	7.4529	6.9169	7.1799	2	4.63	4.27	21.4369	18.2329	19.7701	
3	2.7	2.64	7.29	6.9696	7.128	3	4.64	4.3	21.5296	18.49	19.952	
4	2.74	2.60	7.5076	6.76	7.00	4	4.60	4.28	21.16	18.3184	19.688	
5	2.72	2.62	7.3984	6.8644	7.1264	5	4.62	4.29	21.3444	18.4041	19.734	
6	2.74	2.59	7.5076	6.7081	7.00	6	4.64	4.31	21.5296	18.5761	19.9984	
7	2.71	2.60	7.3441	6.76	7.046	7	4.60	4.28	21.16	18.3184	19.688	
8	2.71	2.61	7.3441	6.8121	7.0731	8	4.61	4.30	21.2521	18.49	19.823	
9	2.69	2.58	7.2361	6.6564	6.9402	9	4.60	4.32	21.16	18.6624	19.872	
10	2.75	2.66	7.5625	7.0756	7.315	10	4.65	4.26	21.6225	18.1476	19.809	
Σ	27.2	26.14	73.9874	68.3352	71.1023	Σ	46.20	42.92	213.4472	184.216	198.2036	
				$(5)^2 = 68.3352 - $		Σ=(x-x [°]) ² =213.4472-(46.20) ² = 0.0032; Σ=(y-y [°]) [°] = 184.216-(42.92) ² =						
0.00524 ; $\Sigma = (x-x^{\circ}) (y-y^{\circ}) = 71.1023-(27.2X26.14)/10 = 0.0015$; Hence, $\Upsilon =$							0.00336 ; $\Sigma = (x - x^{\circ}) (y - y^{\circ}) = 198.809 - (46.2X42.9214)/10 = -0.0868$; Hence, $\Upsilon =$					
0 355374	446					26 47129	9145					

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ppm									ppm		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sl.no	Х	Y	X^2	Y^2	XY	Sl.no	Х	Y	X ²	Y^2	XY
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4.94	4.31	24.4036	18.5761	21.2914	1	5.2	4.99	27.04	24.9001	25.948
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	4.9	4.27	24.01	18.2329	20.923	2	5.22	4.97	27.2484	24.7009	25.9434
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	4.93	4.30	24.3049	18.49	21.199	3	5.23	4.96	27.3529	24.6016	25.9408
	4	4.91	4.28	24.1081	18.3184	21.0148	4	5.19	4.99	26.9361	24.9001	25.8981
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	4.92	4.29	24.2064	18.4041	21.1068	5	5.21	4.98	27.1441	24.8004	25.9458
8 4.91 4.27 24.1081 18.2329 20.9657 8 5.25 4.97 27.5625 24.7009 26.99 9 4.94 4.26 24.4036 18.1476 21.0444 9 5.19 4.99 26.9361 24.9001 25.89 10 4.95 4.27 24.5025 18.2329 21.1365 10 5.19 4.98 26.9361 24.8004 25.89	6	4.91	4.33	24.1081	18.7489	21.2603	6	5.00	5.00	25.00	25.00	25.00
9 4.94 4.26 24.4036 18.1476 21.0444 9 5.19 4.99 26.9361 24.9001 25.89 10 4.95 4.27 24.5025 18.2329 21.1365 10 5.19 4.98 26.9361 24.8004 25.89	7	4.9	4.32	24.01	18.6624	21.168	7	5.22	5.1	27.2484	26.01	26.622
10 4.95 4.27 24.5025 18.2329 21.1365 10 5.19 4.98 26.9361 24.8004 25.89	8	4.91	4.27	24.1081	18.2329	20.9657	8	5.25	4.97	27.5625	24.7009	26.0925
	9	4.94	4.26	24.4036	18.1476	21.0444	9	5.19	4.99	26.9361	24.9001	25.8981
	10	4.95	4.27	24.5025	18.2329	21.1365	10	5.19	4.98	26.9361	24.8004	25.8981
Σ 49.21 42.9 242.1653 184.0462 211.1099 Σ 51.9 49.93 269.4046 249.3145 259.1	Σ	49.21	42.9	242.1653	184.0462	211.1099	Σ	51.9	49.93	269.4046	249.3145	259.1868

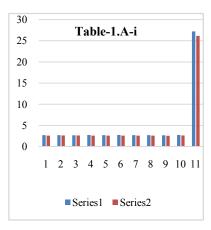
 Table 2.A-v
 Correlations between light intensities of A. filiculoids in 20

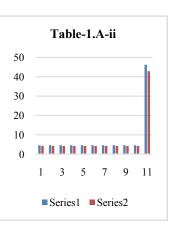
Table 2.A-vi Correlations between light intensities of A. filiculoids in 60

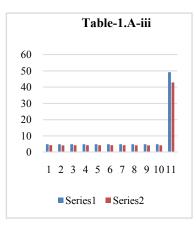
	ppm								ppm	· ·	
Sl.no	Х	Y	X^2	Y^2	XY	Sl.no	Х	Y	X^2	Y^2	XY
1	5	5.33	25	28.4089	26.65	1	5	4.71	25	22.1841	23.55
2	4.9	5.32	24.01	28.3024	26.068	2	4.9	4	24.01	16	19.6
3	5	5.33	25	28.4089	26.65	3	5	4.71	25	22.1841	23.55
4	4.8	5.31	23.04	28.1961	25.488	4	4.8	4.69	23.04	21.9961	22.512
5	5.61	5.34	31.4721	28.5156	29.9574	5	5.01	4.72	25.1001	22.2784	23.6472
6	5.62	5.35	31.5844	28.6225	30.067	6	5.02	4.73	25.2004	22.3729	23.7446
7	5.63	5.36	31.6969	28.7296	30.1768	7	5.03	4.74	25.3009	22.4676	23.8422
8	5.62	5.35	31.5844	28.6225	30.067	8	5.02	4.73	25.2004	25.3009	23.7446
9	5.63	5.36	31.6969	28.7296	30.1768	9	5.03	4.74	25.3009	22.4676	23.8422
10	5.62	5.35	31.5844	28.6225	30.067	10	5.02	4.73	25.2004	25.3009	23.7446
Σ	53.43	53.4	286.6691	285.1586	285.368	Σ	49.83	46.5	248.3531	222.5526	231.7774
Σ=(x	$\Sigma = (x - x^{\circ})^2 = 286.6691 - (53.43)^2 = 1.19261; \Sigma = (y - y^{\circ})^2 = 285.1586 - 100000000000000000000000000000000000$					Σ=(x-x [°]) ² =248.3531 -(49.83) ² = 0.05021; Σ=(y-y [°]) ² = 222.3531 -					
(53	$(53.4)^2 = 0.0026; \Sigma = (x-x^{\circ}) (y-y^{\circ}) = 285.368-(53.43X 53.4)/10 =$						$(46.5)^2 = 6.3276; \Sigma = (x-x^{\circ}) (y-y^{\circ}) = 231.7774 - (49.83X46.5)/10 = 0.0679;$				
			Hence, $\Upsilon = 0.93$			Hence, $\Upsilon = 0.12046341$					

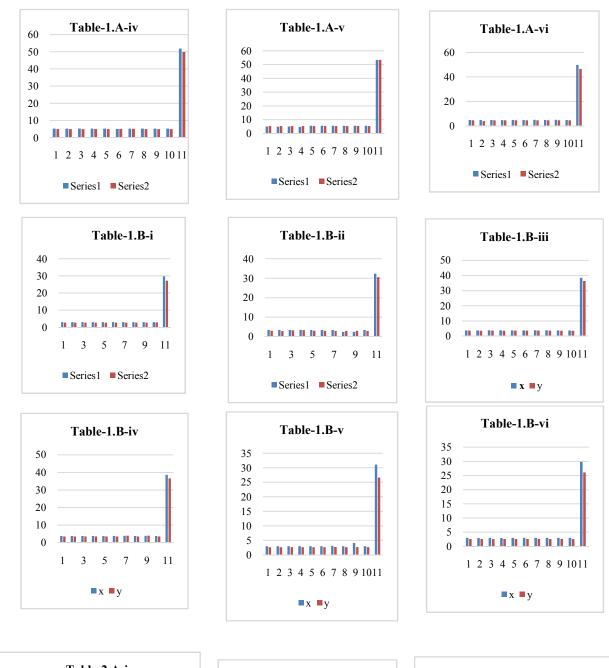
Table 2.B -i: Correlations between light intensities of							Table 2.B -ii: Correlations between light intensities of						
A. pinnata in 0 ppm							A. pinnata in 5 ppm						
Sl. no	Х	Y	X ²	Y^2	XY	Sl. no	Х	Y	X ²	Y^2	XY		
1	2.71	2.61	7.3441	6.8121	7.0731	1	4.61	4.31	21.2521	18.5761	19.8691		
2	2.73	2.63	7.4529	6.9169	7.1799	2	4.63	4.27	21.4369	18.2329	19.7701		
3	2.7	2.64	7.29	6.9696	7.128	3	4.64	4.3	21.5296	18.49	19.952		
4	2.74	2.60	7.5076	6.76	7.00	4	4.60	4.28	21.16	18.3184	19.688		
5	2.72	2.62	7.3984	6.8644	7.1264	5	4.62	4.29	21.3444	18.4041	19.734		
6	2.74	2.59	7.5076	6.7081	7.00	6	4.64	4.31	21.5296	18.5761	19.9984		
7	2.71	2.60	7.3441	6.76	7.046	7	4.60	4.28	21.16	18.3184	19.688		
8	2.71	2.61	7.3441	6.8121	7.0731	8	4.61	4.30	21.2521	18.49	19.823		
9	2.69	2.58	7.2361	6.6564	6.9402	9	4.60	4.32	21.16	18.6624	19.872		
10	2.75	2.66	7.5625	7.0756	7.315	10	4.65	4.26	21.6225	18.1476	19.809		
Σ	27.2	26.14	73.9874	68.3352	71.1023	Σ	46.20	42.92	213.4472	184.216	198.2036		
Σ=(x-x	$)^2 = 73.98$	$74 - (27.2)^2$	= 0.0034; Σ=(y	-yōōō)²=68.3	352 -	$\Sigma = (x-x^{\circ})^2 = 213.4472 - (46.20)^2 = 0.0032; \Sigma = (y-y^{\circ})^2 = 184.216 - (42.92)^2$							

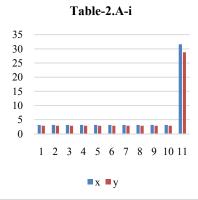
 $(26.14)^2 = 0.00524; \Sigma = (x - x^{\circ}) (y - y^{\circ}) = 71.1023 - (27.2X26.14)/10 = 0.0015; Hence, Y = 0.355374446$

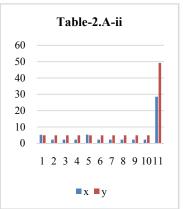

0.25795827

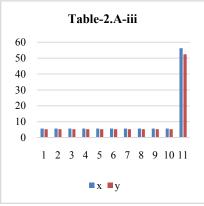

 Σ =(x-x⁵)² =213.4472-(46.20)² = 0.0032; Σ =(y-y⁵⁵)² = 184.216- (42.92)² = 0.00336; Σ = (x-x⁵) (y-y⁵) = 198.2036-(46.20X42.92)/10 = - 0.0868; Hence, Υ = 26.83725401


	Table 2.	B -iii: Cor	relations betwee	n light intensitie		Table 2.B -iv: Correlations between light intensities of						
		А.	pinnata in 10 pj	om		A. pinnata in 15 ppm						
Sl.No	Х	Y	X^2	Y^2	XY	Sl.no	Х	Y	X^2	Y^2	XY	
1	4.94	4.31	24.4036	18.5761	21.2914	1	5.2	4.99	27.04	24.9001	25.948	
2	4.9	4.27	24.01	18.2329	20.923	2	5.22	4.97	27.2484	24.7009	25.9434	
3	4.93	4.30	24.3049	18.49	21.199	3	5.23	4.96	27.3529	24.6016	25.9408	
4	4.91	4.28	24.1081	18.3184	21.0148	4	5.19	4.99	26.9361	24.9001	25.8981	
5	4.92	4.29	24.2064	18.4041	21.1068	5	5.21	4.98	27.1441	24.8004	25.9458	
6	4.91	4.33	24.1081	18.7489	21.2603	6	5.00	5.00	25.00	25.00	25.00	
7	4.9	4.32	24.01	18.6624	21.168	7	5.22	5.1	27.2484	26.01	26.622	
8	4.91	4.27	24.1081	18.2329	20.9657	8	5.25	4.97	27.5625	24.7009	26.0925	
9	4.94	4.26	24.4036	18.1476	21.0444	9	5.19	4.99	26.9361	24.9001	25.8981	
10	4.95	4.27	24.5025	18.2329	21.1365	10	5.19	4.98	26.9361	24.8004	25.8981	
Σ	49.21	42.9	242.1653	184.0462	211.1099	Σ	51.9	49.93	269.4046	249.3145	259.1868	
Σ=(x-x ⊂	$\Sigma = (x - x^{\circ})^2 = 242.1653 - (49.21)^2 = 0.00289; \Sigma = (y - y^{\circ} \circ^{\circ})^2 = 184.0462 - (42.9)^2 = 0.00289; \Sigma = (y - y^{\circ} \circ^{\circ})^2 = 184.0462 - (42.9)^2 = 0.00289; \Sigma = (y - y^{\circ} \circ^{\circ})^2 = 184.0462 - (42.9)^2 = 0.00289; \Sigma = (y - y^{\circ} \circ^{\circ})^2 = 184.0462 - (42.9)^2 = 0.00289; \Sigma = (y - y^{\circ} \circ^{\circ})^2 = 184.0462 - (42.9)^2 = 0.00289; \Sigma = (y - y^{\circ} \circ^{\circ})^2 = 184.0462 - (42.9)^2 = 0.00289; \Sigma = (y - y^{\circ} \circ^{\circ})^2 = 184.0462 - (42.9)^2 = 0.00289; \Sigma = (y - y^{\circ} \circ^{\circ})^2 = 184.0462 - (42.9)^2 = 0.00289; \Sigma = (y - y^{\circ})^2 = 0.0028; \Sigma = (y - y^{\circ})^2 = 0.00289; \Sigma = (y - y^{\circ})^2 = 0.0028; \Sigma$						$\Sigma = (x - x^{\circ})^2 = 269.4046 - (51.9)^2 = 0.0436; \Sigma = (y - y^{\circ} \circ \circ)^2 = 249.3145 - (49.93)^2 = 0.009$					
0.0052; Σ		yō)=211.1	1099-(49.21X42.9)	/10 = 0.001; Hence	e, Υ=	Σ= (x-xō) (y-y Ō) =	259.1868-(51	.9X49.93)/10 = -	0.0099; Hence, Υ=	0.483900815	


	Table 2.B -v: Correlations between light intensities of A. pinnata in 20 ppm 2							Table 2.B-vi: Correlations between light intensities of A. pinnata in 60 ppm				
Sl. No	Х	Y	X ²	Y ²	XY	Sl. no	Х	Y	X ²	Y ²	XY	
1	5	5.33	25	28.4089	26.65	1	5	4.71	25	22.1841	23.55	
2	4.9	5.32	24.01	28.3024	26.068	2	4.9	4	24.01	16	19.6	
3	5	5.33	25.00	28.4089	26.65	3	5	4.71	25	22.1841	23.55	
4	4.8	5.31	23.04	28.1961	25.488	4	4.8	4.69	23.04	21.9961	22.512	
5	5.61	5.34	31.4721	28.5156	29.9574	5	5.01	4.72	25.1001	22.2784	23.6472	
6	5.62	5.35	31.5844	28.6225	30.067	6	5.02	4.73	25.2004	22.3729	23.7446	
7	5.63	5.36	31.6969	28.7296	30.1768	7	5.03	4.74	25.3009	22.4676	23.8422	
8	5.62	5.35	31.5844	28.6225	30.067	8	5.02	4.73	25.2004	25.3009	23.7446	
9	5.63	5.36	31.6969	28.7296	30.1768	9	5.03	4.74	25.3009	22.4676	23.8422	
10	5.62	5.35	31.5844	28.6225	30.067	10	5.02	4.73	25.2004	25.3009	23.7446	
Σ	53.43	53.4	286.6691	285.1586	285.368	Σ	49.83	46.5	248.3531	222.5526	231.7774	
	$\Sigma = (x - x^{\circ})^2 = 286.6691 - (53.43)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2 = 1.19251;47649; \Sigma = (y - y^{\circ} = 0)^2$					$\Sigma = (x - x^{\circ})^2 = 248.3531 - (49.83)^2 = 0.05021; \Sigma = (y - y^{\circ} \circ)^2 = 222.5526 - (46.5)^2$					$2.5526 - (46.5)^2$	
2	$285.1586 - (53.4)^2 = 0.0026$; $\Sigma = (x-x^{\circ})(y-y^{\circ}) = 285.368 - 100000000000000000000000000000000000$					$= 6.3276$; $\Sigma = (x - x^{\circ}) (y - y^{\circ}) = 231.7774 - (49.83 \times 46.5)/10 = 0.0679$; Hence,					.0679; Hence,	
	(53.432	X53.4)/10 =	= 0.0515; Hence	, Υ= 0.92488884	43				Y= 0.1204634	1		


Graphical representation of each and Table has been cited hereunderin





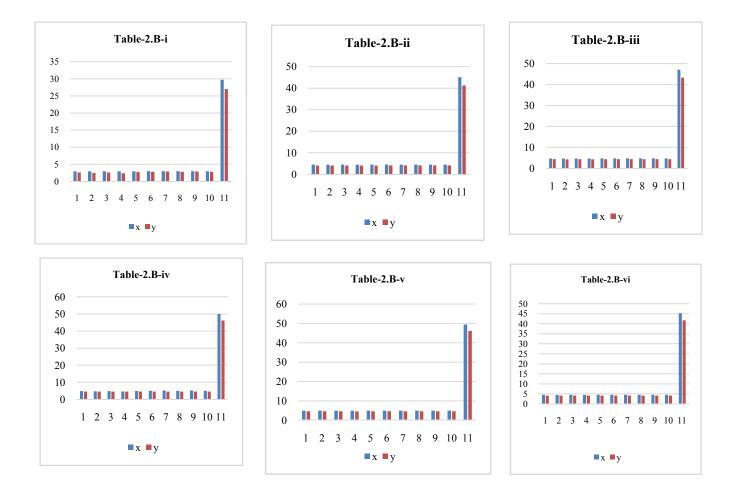
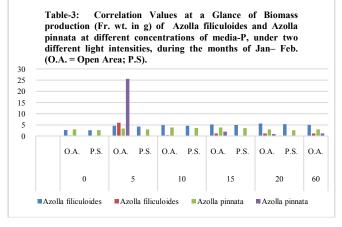
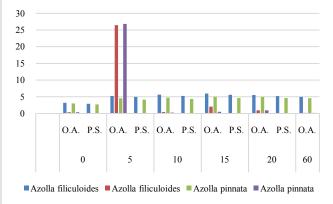



Table3 Correlation Values at a Glance of Biomass production (Fr. wt. in g) of *Azollafiliculoides* and *Azollapinnata* at different concentrations of media-P, under two different light intensities, during the months of Jan- Feb. (O.A. = Open Area; P.S. = Partial Shade) (initial fr. wt. being 2 g in each case).

Concentrations	Light	Azolla	nfiliculoides	Azollapinnata		
of media-P (ppm)	intensities	Mean Value	Correlation value	Mean Value	Correlation value	
0	O.A. P.S.	2.720 2.626	0.3553	2.970 2.701	0.2379	
5	O.A. P.S.	4.620 4.291	6.0166	3.445 3.020	25.5736	
10	O.A. P.S.	4.920 4.642	0.4003	3.856 3.647	0.0167	
15	O.A. P.S.	5.210 4.980	1.2300	3.860 3.580	2.0271	
20	O.A. P.S.	5.610 5.340	1.2033	2.990 2.660	0.9302	
60	O.A. P.S.	5.010 4.727	1.2046	2.980 2.615	1.2046	

Graphical representation of Table- 3 has been cited below:


Table 4 Correlation Values at a Glance of Biomass production (Fr. wt. in g) of *Azollapinnata* at different concentrations of media-P, under two different light intensities, during the months of Mar-Apr. (O.A. = Open area; P.S. = P.S.) (initial fr. wt. being 2 g in each case)

Concentrations	Light	Azoll	afiliculoides	Azollapinnata		
\of media-P	intensities	Mean	Correlation	Mean	Correlation	
(ppm)		Value	value	Value	value	
0	O.A.	3.160	0.3553	2.970	0.3553	
U	P.S.	2.881	0.5555	2.701	0.5555	
5	O.A.	5.252	26.4712	4.518	26.8372	
5	P.S.	4.920	20.4/12	4.120	20.8372	
10	O.A.	5.630	0.4003	4.710	0.2579	
10	P.S.	5.240	0.4005	4.330	0.2379	
15	O.A.	5.930	2.02710	5.000	0.4839	
15	P.S.	5.555	2.02/10	4.617	0.4659	

20	O.A.	5.521	0.9230	4.944	0.9248
20	P.S.	5.170	0.9230	4.617	0.9248
60	O.A.	4.945	0.1204	4.538	0.1204
			0.1204	4.175	0.1204

Graphical representation of Table-4 has been cited below

Table 4: Correlation Values at a Glance of Biomass production (Fr. wt. in g) of Azolla pinnata at different concentrations of media-P, under two different light intensities, during the months of Mar-Apr. (O.A. = Open area; P.S. = P.S.) (initial fr. wt. b

DISCUSSION

In the above experiments it has been found that in control set in case of both the species of *Azolla*i.e. *A.filiculoides* and *A.pinnata*, the biomass production as measured, was lowest in the months of Mar-Apr, but in the months of Jan-Feb, *A.pinnata* produced more or less same biomass at the control set as well as at 60 ppm of media-P. Both the specieswere found to produce the highest production of biomass at15ppm of media-phosphorous concentration during the months of March -April, but in Jan- Feb*A.filiculoodes* showed the maximum production at 20 ppm of media-P whereas, *A.pinnata* showed at 10-15 ppm of media-P.

During the months of Jan-Feb, when the temperature ranged from 15.40° C to 25.20° C, relative humidity varied from 53.9% to 91% with a solar intensity of 203.77 μ mol m⁻² s⁻¹ in P.S. and 437.36 μ mol m⁻² s⁻¹ in O.A. and having no rainfall, maximum biomass was found to be produced by *A. faliculoides* i.e. 5.610 g in O.A. 5.340 g in P.S., at 20 ppm of media-P and *A. pinnata* producing 3.860 g in O.A. at 15 ppm of media-P, 3.647 g in P.S. at 10 ppm of media-P. The maximum decrease in fresh biomass at limiting concentration of media-P (5 ppm of media -P) was found in *A. pinnata*.

Again, during the months of March -April, when the temperature ranged between 23.07^{0} C and 35.65^{0} C relative humidity was 32.18% to 91% with a solar intensity of 532.98 μ mol m⁻² s⁻¹ in open area, 252.62μ mol m⁻² s⁻¹ P.S., with no rainfall, *A. filiculoides* produced 5.930 g in O.A. and 5.555 g in P.S. at 15 ppm of media-P, and *A. pinnata* producing 5.000 g and 4.617 g in O.A. and P.S. respectively at 15 ppm of media-P.

During the months of March-April, it has been observed that, the tolerable concentration of media-P was 15-20 ppm of media-P, but the tolerable limit of *A. filiculoides* was 15 ppm of media-P. Though *A.pinnata* preferred lower concentration of media-P, but when the temperature arose, then the species showed the tendency to tolerate higher concentration of media-P.Again, *A.filiculoides* was a high media-P requiring species, it has been found to utilize lower concentration of media-P as compared to winter season. O.A .was found to be more favourable than the P.S. for biomass production in both the cases.

The maximum biomass obtained by the two species at their respective optimum concentration were found to remain stable upto 20 ppm of media-P and 15 ppm of media-P during the months of Jan-Feb and Mar-April respectively in case of *A. filiculoides* but it was 15 ppm of media-P during the months of Jan-Feb, whereas, 20 ppm of media-P during the months of Mar-Apr in case of *A.pinnata*, indicating the tendency to utilize higher concentration of media-P during summer by *A. pinnata* and lower concentration of media-P by *A.filiculoides* as compared to winter season.

The graphical curve was falling down linearly up to the 60 ppm phosphorous concentration and was observed less than control set in case of the control set-up experiment run during January-February and March-April months. It has been observed that experiments run during January-February months i.e. during winter month was stable in biomass production which indicates the acceptability of phosphorous media.

The effect of different concentrations of phosphorous which have been cited in tables and graphs. Indeed, phosphorous has proved its positive role to enhanced the stable growth of the plant population in 20 ppm concentration. Further, it does require in any higher concentrations up to 60 ppm. Some relevant references of this findings also supported this hypothesis. Our results are consistent with the hypothesis that temperature might be an important factor determining the fitness of floating macrophytes (Janes 1998; van der Heide et al. 2006; Netten et al. 2010; Szabo et al. 2010; Peters et al. 2013; Watanbe et al., 1977, 1981). Warm temperatures during the winter might open "windows of opportunity" that promote the fast growth of Azolla mats before the spring establishment of submerged macrophytes. A positive increase in the fitness of floating species (Azolla among others) in response to local warming has also been described in temperate areas, such as in a thermal stream in Slovenia (Saina et al. 2007), and in a portion of the River Erft (Germany) which has been abnormally warmed as a consequence of opencast mining water discharges (Hussner and Lösch 2005). Several studies have pointed out that a major consequence of increasing nutrient loading in water bodies is the displacement of functional groups responsible for primary production from submerged to floating macrophytes, some of which may be invasive and outcompete floating macrophytes (Morris et al. 2003; Meerhoff et al. 2007; Netten et al. 2010; Szabo et al. 2010; Scheffer et al. 2003). In water ecosystems these shifts can affect species assemblages, sediment biogeochemistry and water quality. Therefore, one major consequence of dense blooms of Azolla is the decrease of submerged macrophyte cover (Janes et al. 1996). Although we did not study its effect on submerged macrophytes, threshold irradiance for maintaining autotrophic communities dominated by submerged macrophytes have been identified in Doñana (Geertz-Hansen et al. 2011). The effect of this important nutrient on the overgrowth of Azolla has also been confirmed in Anzaliwetland (Sadeghi et al., 2012a, 2012b), in laboratory experiments, Jane (1998) found that increasing phosphorous supply led to increase sporulation. Kushari and Watanabe (1991), Kushari and Watanabe (1992), observed the optimum

growth of different species belong to *Azolla* genus which responded to different concentrations of phosphorous.

Biomass producion of both the species of *Azolla* were shown as tabulated form in the Table-3 for the month of Jannuary -February and in the Table-4 for the month from March - April. It has been evident clearly that the correlation value of *A. pinnata* was seems to be greater than that of *A, filiculoides* in both the seasons. Fannah (1987) reported a completed life cycle of Elophilaafricalis on *A. pinnata* in Sierra Leone which was followed up by Roberts *et al.* (1998). Sands and Kassulke (1986) reported oviposition by females of *Pauliniaacuminata* after feeding on *A. pinnata*. Therefore, it is unlikely that it is an important constraint on *A. pinnata* Stewart *et al.*(1968, 1976,1977,1980, 1982).

Singh *et al.* (2010) studied the effect of micronutrients (e.g. Mo6+, Mn2+, Zn2+, Cu2+ and Fe2+) on cellular and extracellular activities of two Azolla species (A. microphylla and A. filiculoides) exposed to a P-deficient, saline (20mM NaCl) medium. At lower concentrations (0-0.01mM), the micronutrients showed a significant enhancement in the given activity, whereas higher concentrations (e.g. at 10 mM) played an inhibitory role. Sadeghi *et al.* (2012b) reported a moderate effect of Fe on the growth of *A. filiculoides* in the Anzali wetland.

CONCLUSION

In order to have a successful wetland restoration and conservation management program one has to get acquainted with the habitat requirements of invasive aquatic fern species such as *Azolla*. However, this mosquito fern has many benefits (e.g. nitrogen fixation, phosphorus removal from wastewater, or use as green fertilizer), until now, little is known about the negative impacts of *Azolla* (as an invader or alien species) on a new environment. This paper reviewed the most important structural habitat variables in order to meet the habitat requirements of *Azolla* including water, light intensity, air and water temperature, relative humidity, wind velocity and waves. Moreover, the importance of physical-chemical variables for *Azolla* has been confirmed from the cited literature. Phosphorus is considered to be the most important macronutrients to induce the growth of *Azolla*.

On the other hand, some micronutrients (e.g. molybdenum, cobalt and vanadium) are wellknown to stimulate the growth of *Azolla*. The structural habitat variables probably have a more important effect on growth of Azolla compared to the physical-chemical ones. Among the biological factors covered, insects, bacteria, fungi and viruses have been shown to affect growth and development of *Azolla*. As a final conclusion, getting more insight into abiotic and biotic factors affecting growth of *Azolla*will help future research and management of this aquatic fern. On the contrary, it has also been found the growth was better in open area condition that that of the partial shade condition of cultivation in both the species supported by the evidence of research work of

Reference

- 1. Africa. Report to the Water Research Commission of South Africa, WRC Report No. KV 158/05. pp. 108.
- 2. AR, Jeppesen E (2007) Can warm climate-related structure of littoral predator assemblies weaken the

clear water state in shallow lakes? Global Change Biology 13: 1888-1897.

- Boyd, CE. (1968). Evaluation of some common aquatic weeds as possible feed stuffs. Hyacynth Contr. J. 7: 26-27.
- 4. Boyd, CE. (1969). The nutritive value of three species of water weeds. Economic Botany. 22(4): 359-368.
- 5. Boyd, CE. (1970). Vascular aquatic plants for mineral nutrient removal from pollutant water. Economic Botany. 24: 95-103.
- 6. Boyd, G.A., Board, F.A.: A preliminary report on histochemography. Science **110**, 586-588 (1949).
- 7. Boyd, G.A.: Autoradiography in biology and medicine. New York: Academic Press 1955.
- Costa, M.L., Santos, M.C.R., Carrapico, F. and Pereirac, A.L. (2009) *Azolla-Anabaena*'s behaviour in urban wastewater and artificial media-Influence of combined nitrogen. Water Resource. 43, 3743-3750.
- Dymond, G, Lee AN, (1979) A new approach for control of Azollafiliculoides. Proceedings of the 7th Asian-Pacific Weed Science Society Conference, Sydney, Australia. 253-255.
- EL Katony, T.M., Serao, M.S., Badway, A.M. and Mousa, M.A. (1996) Effect of phosphorus on growth and uptake of nutrients by *A. filiculoides* Lam. Journal of Environmental Sciences. 12, 69-88.
- Evrard, C.; Van Hove, C. (2004). "Taxonomy of the American *Azolla*" species (Azollaceae): A critical review". Systematics and Geography of Plants. 74: 301-318.
- Fannah SJ, 1987. *Elophilaafricalis* Hampson (Lepidoptera: Pyralidae): a new pest of *Azolla*in Sierra Leone. International Rice Research Newsletter, 12(3):30.
- Greetz-Hansen O, Montes C, Durate CM, Sand Jensen K, Marba N, Grillas P, (2011). Ecosystem metabolism in a temporary Mediterranean march (Donana National Park, SW Spain). Biogeosciemces. 8: 963-971.
- Henderson, L. (2000). Alien weeds and invasive plants. A complete guide to declared weeds and invaders in South Africa. Plant Protection Research Institute Handbook No. 12, 300pp. PPR, ARC South Africa.
- 15. Henderson, L. (2002a). Problem plants in Ngorongoro Conservation Area. Final Report to the NCAA.
- 16. Henderson, L. and Cilliers, C.J. 2002b. Invasive aquatic plants-a guide to the identification of the most important and potentially dangerous invasive aquatic and wetland plants in South Africa. PPRI Handbook No. 16, Agricultural Research Council, Pretoria.www.arc.agric.za/uploads/images/0_SAPIA_N EWS_No._17.
- Hill, M.P. (2003) The impact and control of alien aquatic vegetation in South Africanaquatic ecosystems. African Journal of Aquatic Science. 28, 19-24.
- 18. Hussner A and Losch R, (2005). Alien acquatic plants in a thermally abnormal river and their assembly to neophytic dominated macrophyte stands (River Erft, Northrhine- West phatia), Limnologica 35: 18-30.
- 19. Hussner A, Lösch R (2005) Alien aquatic plants in a thermally abnormal river and their assembly to neophyte-dominated macrophyte stands (River Erft, Northrhine-Westphalia).

- 20. Hussner A, Lösch R (2005) Alien aquatic plants in a thermally abnormal river and their assembly to neophyte-dominated macrophyte stands (River Erft, Northrhine-Westphalia).
- Hussner A, Weyer Kvan de, Gross EM, Hilt S, 2010. Comments on increasing number and abundance of nonindigenous aquatic macrophyte species in Germany. Weed Research (Oxford), 50(6):519-526. http://www.blackwell-synergy.com/loi/wre
- 22. Hussner A. and Losch, R. (2005). Alien acquaticplants in a thermally abnormal rivers and their assembly to neophytic dominated macrophytic stands (River Erft, Northrhine- Westphalia) Limnologica 35: 18-30.
- Jain, S.K., Gujral, G.S., Jha, N.K. and Vasudevan, P. (1992) Production of biogas from *Azollapinnata*R.Br and Lemna minor L.: Effect of heavy metal contamination. Bioresource Technology . 41, 273-277.
- 24. Janes, R. (1998) Growth and survival of *A. filiculoides* in Britain.1. Vegetative reproduction. New Phytologist. 138, 367-376.
- 25. Kushani, D.P. and Watanabe, I. (1991). Differential responses of *Azolla*fo. phosphorus deficiency. In: Soil Science and Plant Nutrition. 3-7 (2): 271-282.
- 26. Kushari, D.P. and Watanabe, I. (1992) Differential responses of *Azolla* to phosphorus deficiency. Part II. Screening method under concentration controlled condition. Soil Science and Plant Nutrition. 38, 65-79.
- 27. Limnologica35: 18-30,
- Lumpkin TA, Plucknett DL, 1982. *Azolla* as a green manure: use and management in crop production. *Azolla*as a green manure: use and management in crop production. Westview Press Boulder, Colorado, 230pp.
- 29. McConnachie, A.J. 2004. Post release evaluation of StenoelmusrufinasusGyllenhal
- Mc Connachie, A.J., de Wit, M.P., Hill, M.P. & Byrne, M.J. 2003. Economic evaluation of the successful biological control of *Azollafiliculoides* in South Africa. iological Control 28: 25-32Mc Connachie, A.J., Hill, M.P. & Byrne, M.J. 2004. Field assessment of a frondfeeding weevil, a successful biological control agent of red water fern, *Azollafiliculoides*, in southern Africa. Biological Control 29: 326-331.
- 31. McConnachie, A.J. & Hill, M.P. 2005. Biologicalcontrol of red water fern in South
- 32. Meerhoff M, Clemente J, Mello, FT, Iglesias C, Asger R, Pederson AR, Jeppesen F, (2007). Can warm climate related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global changes (2010). Biology. 13: 1888-1897.
- 33. Morris K, Bailey PCE, Boon PI, Hughes L, (2003). Alternative stable states in the acquatic vegetation of shallow urban lakes, II. Catastropic loss of acquatic plants consequent to nutrient enrichment. Marine Fresh water Research. 54: 201-215.
- 34. Netten JCC, Arts of GHP, Gylstra R, Van Nes EH, Schieffer M, Roijackers RMM (2010). Effect of temperature and nutrients on the competition between free floating *Salvanianatans* and submerged *Elodea nuttallii* in mesocomes. Fundamental Allied Limnology. 177: 125-132.
- 35. Panse V. G. and P. V. Sukhatme.2005. Statistical Methods for Agricultural Workers, Published by Indian Council of Agricultural Research, 2005.

- Reddy, P. M., and E. R. S. Thalpasayi. 1981. Some observation related to red-far red antagonism in Anabaena ferrilisima. Biochem. Physiol. Pflanzen. 176:105-107.
- Reddy, P.M. and Roger, P.A. (1988). Dynamics of algal populations and acetylene-reducing activity in five rice soils inoculated with blue-green algae. Biol. Fertil. Soil. 6:14-21.
- 38. Research (CSIR) and Water Research Institute.
- Sadeghi, R., Zarkami, R., Sabetraftar, K. and Van Damme, P. (2012a) Use of support vector machines (SVMs) to predict distribution of an invasive water fern *Azollafiliculoides* (Lam.) in Anzali wetland, southern Caspian Sea, Iran. Ecological Modelling. 244, 117-126.
- Sadeghi, R., Zarkami, R., Sabetraftar, K. and Van Damme, P. (2012b) Application of classification trees to model the distribution pattern of a new exotic species *Azollafiliculoides* (Lam.) at Selkeh Wildlife Refuge, Anzali wetland, Iran. Ecological Modelling. 243, 8-17.
- 41. Sadeghi, R., Zarkami, R., Sabetraftar, K. and Van Damme, P. (2013) Application of genetic algorithm and greedy stepwise to select input variables in classification tree models for the prediction of habitat requirements of *Azollafiliculoides* (Lam.) in Anzali wetland, Iran. Ecological Modelling. 251, 44-53.
- 42. Sajna N, Halder M, Skomik S, Kaligaric M, (2007). Survival and expansion of *Pistia Stratiotes* L. in a thermal stream in Slovenia. Acquatic Botany. 87: 75-79.
- Sands DPA; Kassulke RC, 1986. Assessment of Pauliniaacuminata (Orthoptera: Acrididae) for the biological control of Salvinia molesta in Australia. Entomophaga, 31(1):11-17.
- 44. Scheffer M, Szaba S, Gragnani A, Van Nes EH, Rinaldi S, Kautsky N, Norberg J, Roijacker RMM (2003). Floating Plan dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America. 10: 4040-4045.
- Serag, M.S., El-Hakeem, A., Badway, M. and Mousa, M.A, (2000) On the ecology of A. filiculoides Lam. in Damietta District, Egypt. Limnologica. 30, 73-81.
- Shahjahan AKM; Miah SA; Nahar MA; Majid MA, 1980. Fungi attack Azolla in Bangladesh. International Rice Research Newsletter, 5(1):17-18.
- 47. Shardendu and R. S. Ambasht. 1991. Relationship of nutrients in water with biomass and nutrient accumulation of submerged macrophytes of a tropical wetland. New Phytologist 117:493-500.
- Stewart KK. (1976). Nutrient removal potential of various aquatic plants. Hyacinth Control Journal. 8:34-35.
- Stewart, VW:.Di;#.; v.(1982) ,V: Nitrogen fixation, its current relevance and future potential. Israel J. Bot. 31: 5-44.
- 50. Stewart, W. D; P., FitzbraldyG:yP; and Burris, R.H. (1968). Acetylene. reduction. by' nitrogen fixing bluegreen algae. Arch.'.'Microbiol-.': .62: ,.336-348.
- 51. Stewart, W.D.P. (1977). A botanical ramble among the bluegreen algae. Br. Phycol. J. 13: 89-115. 220
- Stewart, W.D.P. (1980). Systems involving blue-green algae (cyanobacteria) . In: Methods for evaluating Biological Nitrogen Fixation (F.J. Bergersen, eds.) New York: Wi 11ey. pp. 5 8,3 -:6S 0.

- 53. Szabo S, Scheffer M, Roijackers RMM, Waluto B, Braun M, Nagy PT, Borics G, Zambrano L, (2010).Strong growth Limitation of a floating plant (*Lemnagibba*). by the submerged macrophyte (Elodea nuttallii) under laboratory condition. Fresh water Biology. 55: 681-690.
- 54. Wagner, G.M. (1997). *Azolla*: a review of its biology and utilization, Botanical Review. 63, 1-26.
- 55. Watanabe, I. (1982) Azolla-Anabaena symbiosis- its physiology and use in tropical agriculture. In: Dommergues, Y.R. and Diems, H.G. (eds). Microbiology of tropical soils and plant productivity. The Hague, The Netherlands: MartinusNijhoff, pp169-185.
- Watanabe, I., Bai Ke-zhi, N.S. Berja, C.R. Espinas, O. Ito, and B.P.R. Subudhi. 1981. The Azolla-Anabaena complex and its use in rice culture. IRRI Res. Pap. Ser. 69. 11 p.
- 57. Watanabe, I., Berja, N.S. and Alimagno, V.B. (1977). The utilization of the *Azolla-Anabaena* complex as a nitrogen fertilizer for rice, Int. Rice Res. Paper Ser. No. 11.
- Yount, C.B., *et al.* 1965. Determination of 15 N in biological samples by mass spectrometer [in Chinese]. Atomic Energy 6:535-540.
- Yount, C.B., J. W. Li, W. Song, and W. X. Wei. 1981. Effect ofnitrogensourceon home physiological characteristics of *Azolla*. Pages 719-725 in Proceedings of symposium on paddy soils. Science Press, Beijing.

How to cite this article:

Gopa Shome and Jagatpati Tah (2020) 'Comparative Study of the Effect of Different Concentrations of Media Phosphorous of Two Species of Azolla in Two Seasons', *International Journal of Current Advanced Research*, 09(11), pp. 23328-23338. DOI: http://dx.doi.org/10.24327/ijcar.2020. 23338.4622
